Tumor Necrosis Factor

Biofizika. 2004 May-Jun;49(3):545-50.

A comparison of the effects of millimeter and centimeter waves on tumor necrosis factor production in mouse cells.

[Article in Russian]

Sinotova OA, Novoselova EG, Glushkova OV, Fesenko EE.

Abstract

The effects of millimeter (40 GHz) and centimeter (8.15-18.00 GHz) low-intensity waves on the production of tumor necrosis factor (TNE) in macrophages and lymphocytes from exposed mice as well as in exposed isolated cells were compared. It was found that the dynamics of TNF secretory activity of cells varies depending on the frequency and duration of exposure. The application of millimeter waves induced a nonmonotonous course of the dose-effect curve for TNF changes in macrophages and splenocytes. Alternately, a stimulation and a decrease in TNF production were observed following the application of millimeter waves. On the contrary, centimeter waves provoked an activation in cytokine production. It is proposed that, in contrast to millimeter waves, the single application of centimeter waves to animals (within 2 to 96 h) or isolated cells (within 0.5 to 2.5 h) induced a much more substantial stimulation of immunity.

Biofizika. 2002 Mar-Apr;47(2):376-81.

Immunomodulating effect of electromagnetic waves on production of tumor necrosis factor in mice with various rates of neoplasm growth.

[Article in Russian]

Glushkova OV, Novoselova EG, Sinotova OA, Vrublevskaia VV, Fesenko EE.

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia.

Abstract

The effects of low-density centimeter waves (8.15-18 GHz, 1 microW/cm2, 1 h daily for 14 days; MW) on tumor necrosis factor production in macrophages of mice with different growth rate of a cancer solid model produced after hypodermic injection of Ehrlich carcinoma ascites cells into hind legs were studied. After irradiation, an increase in the concentration of tumor necrosis factor in immunocompetent cells of healthy and, specially, of tumor-bearing animals was observed; and the effect of stimulation was higher upon exposure of mice carrying rapidly growing tumors. We suggest that the significant immunomodulating effect of low-density microwaves can be utilized for tumor growth suppression.

Biofizika. 2001 Jan-Feb;46(1):131-5.

Effect of centimeter microwaves and the combined magnetic field on the tumor necrosis factor production in cells of mice with experimental tumors.

[Article in Russian]

Novoselova EG, Oga? VB, Sorokina OV, Novikov VV, Fesenko EE.

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia.

Abstract

The effect of fractionated exposure to low-intensity microwaves (8.15-18 GHz, 1 microW/cm2, 1.5 h daily for 7 days) and combined weak magnetic field (constant 65 1 microT; alternating–100 nT, 3-10 Hz) on the production of tumor necrosis factor in macrophages of mice with experimental solid tumors produced by transplantation of Ehrlich ascites carcinoma was studied. It was found that exposure of mice to both microwaves and magnetic field enhanced the adaptive response of the organism to the onset of tumor growth: the production of tumor necrosis factor in peritoneal macrophages of tumor-bearing mice was higher than in unexposed mice.