Neurological

Altern Ther Health Med.  2011 Nov-Dec;17(6):22-8. Long-term Effects of Bio-electromagnetic-energyregulation Therapy on Fatigue in Patients With Multiple Sclerosis. Ziemssen T, Piatkowski J, Haase R. Abstract Background Electromagnetic-field therapy has beneficial short-term effects in multiple sclerosis (MS) patients with major fatigue, but long-term data are lacking. Primary Study Objectives To evaluate the long-term effects of a specific electromagnetic therapy device (Bio-Electromagnetic- Energy-Regulation [BEMER]) on MS-related fatigue, we designed a crossover control of a previously performed randomized controlled trial and a long-term open-label follow-up trial. Design and Setting: Crossover and open-label follow-up trials at a single neurological outpatient center. Participants Patients with relapsing-remitting MS who had major fatigue (N = 37 patients). Intervention After a previous randomized controlled trial (exposure to low-frequency pulsed magnetic fields for 8 min twice daily or to placebo treatment for 12 wk), a crossover from control to treatment for another 12 weeks, followed by an openlabel follow-up trial to 3 years, were done. Primary Outcome Measures The outcome criteria were the Modified Fatigue Impact Scale (MFIS), Fatigue Severity Scale (FSS), German long version of the Center for Epidemiologic Studies Depression Scale (CES-D), Multiple Sclerosis Functional Scale (MSFC), and Expanded Disability Status Scale (EDSS). Results Patients previously on placebo during the randomized controlled trial experienced significant reductions in fatigue after crossing over to treatment. The MFIS and FSS scores were significantly lower in the open-label group than in the control subjects after follow-up. Participation in the open-label treatment was the strongest predictor of low fatigue outcome after followup. Electromagnetic-field therapy was well tolerated. Conclusions In this long-term study, a beneficial effect of long-term BEMER therapy on MS fatigue was demonstrated. Electromagnetic-field therapy may be a useful therapeutic modality in MS patients with severe fatigue.  J Recept Signal Transduct Res. 2010 Aug;30(4):214-26. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. Kovacic P, Somanathan R. Department of Chemistry, San Diego State University, San Diego, California, USA. pkovacic@sundown.sdsu.edu Abstract Electromagnetic fields (EMFs) played a role in the initiation of living systems, as well as subsequent evolution. The more recent literature on electrochemistry is documented, as well as magnetism. The large numbers of reports on interaction with living systems and the consequences are presented. An important aspect is involvement with cell signaling and resultant effects in which numerous signaling pathways participate. Much research has been devoted to the influence of man-made EMFs, e.g., from cell phones and electrical lines, on human health. The degree of seriousness is unresolved at present. The relationship of EMFs to reactive oxygen species (ROS) and oxidative stress (OS) is discussed. There is evidence that indicates a relationship involving EMFs, ROS, and OS with toxic effects. Various articles deal with the beneficial aspects of antioxidants (AOs) in countering the harmful influence from ROS-OS associated with EMFs. EMFs are useful in medicine, as indicated by healing bone fractures. Beneficial effects are recorded from electrical treatment of patients with Parkinson’s disease, depression, and cancer. J Altern Complement Med.  2009 May;15(5):507-11. Effect of BEMER magnetic field therapy on the level of fatigue in patients with multiple sclerosis: a randomized, double-blind controlled trial. Piatkowski J, Kern S, Ziemssen T. Source Neurological Outpatient Center Reichenbachstrasse, Dresden, Germany. Abstract OBJECTIVES: Electromagnetic field therapy has been reported to be beneficial in patients with multiple sclerosis (MS) with significant fatigue. This study was designed to evaluate the long-term effects of Bio-Electro-Magnetic-Energy-Regulation (BEMER) on MS-related fatigue. DESIGN: This was a monocenter, patient- and rater-blinded, placebo-controlled trial. PATIENTS: There were 37 relapsing-remitting patients with MS with significant fatigue in the study. INTERVENTION: The intervention consisted of BEMER magnetic field treatment for 8 minutes twice daily in comparison to placebo for 12 weeks. OUTCOME MEASURES: The primary outcome criterion was change in the Modified Fatigue Impact Scale (MFIS) between baseline and 12 weeks. The secondary outcome criteria were changes of the Fatigue Severity Scale (FSS), a general depression scale-long version (ADS-L), Multiple Sclerosis Functional Scale (MSFC), and the Expanded Disability Status Scale (EDSS). RESULTS: There was evidence of a significant difference of MFIS value (primary outcome criterion) after 12 weeks in favor of the verum group (26.84 versus 36.67; p = 0.024). In addition, FSS values were significantly lower in the verum group after 12 weeks (3.5 versus 4.7; p = 0.016). After 6 weeks’ follow-up, verum and placebo groups did not differ in experienced fatigue (MFIS, FSS). Regarding the subscales of the MFIS, there was a significant decrease in physical (p = 0.018) and cognitive (p = 0.041), but not in psychologic subscales only in the verum group regarding the timepoints baseline and 12 weeks. BEMER therapy was well tolerated. DISCUSSION: In this pilot study, we were able to demonstrate a beneficial effect of BEMER intervention on MS fatigue. As this was only a pilot study, trials with more patients and longer duration are mandatory to describe long-term effects. Biolectromagn Biol Med. 2007;26(4):305-9. The autistic syndrome and endogenous ion cyclotron resonance: state of the art. Crescentini F. Department of Bioelectromagnetic Research, I.R.P. L’Aquila, Pescara, Italy. The autistic syndrome is a multigenic disease whose expression is different according to the level of involvement of different structures in the central nervous system. The pathogenesis is unknown. No completely effective medical therapy has yet been demonstrated. Accepting the request of the families of eight autistic children in Lomazzo, Milan and Naples, we used ion cyclotron resonance (Seqex(R) therapy) therapeutic support after many other therapies had been already carried out on these patients. After regimens consisting of 20-30 treatments with ICR, improvements were noted in all cases. Int J Neurosci. 2006 Jul;116(7):775-826. Serotonergic mechanisms in amyotrophic lateral sclerosis. Sandyk R. The Carrick Institute for Clinical Ergonomics Rehabilitation, and Applied Neurosciences, School of Engineering Technologies State University of New York at Farmingdale, Farmingdale, New York 11735, USA. rsandyk@optonline.net Serotonin (5-HT) has been intimately linked with global regulation of motor behavior, local control of motoneuron excitability, functional recovery of spinal motoneurons as well as neuronal maturation and aging. Selective degeneration of motoneurons is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Motoneurons that are preferentially affected in ALS are also densely innervated by 5-HT neurons (e.g., trigeminal, facial, ambiguus, and hypoglossal brainstem nuclei as well as ventral horn and motor cortex). Conversely, motoneuron groups that appear more resistant to the process of neurodegeneration in ALS (e.g., oculomotor, trochlear, and abducens nuclei) as well as the cerebellum receive only sparse 5-HT input. The glutamate excitotoxicity theory maintains that in ALS degeneration of motoneurons is caused by excessive glutamate neurotransmission, which is neurotoxic. Because of its facilitatory effects on glutaminergic motoneuron excitation, 5-HT may be pivotal to the pathogenesis and therapy of ALS. 5-HT levels as well as the concentrations 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 5-HT, are reduced in postmortem spinal cord tissue of ALS patients indicating decreased 5-HT release. Furthermore, cerebrospinal fluid levels of tryptophan, a precursor of 5-HT, are decreased in patients with ALS and plasma concentrations of tryptophan are also decreased with the lowest levels found in the most severely affected patients. In ALS progressive degeneration of 5-HT neurons would result in a compensatory increase in glutamate excitation of motoneurons. Additionally, because 5-HT, acting through presynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission, lowered 5-HT activity would lead to increased synaptic glutamate release. Furthermore, 5-HT is a precursor of melatonin, which inhibits glutamate release and glutamate-induced neurotoxicity. Thus, progressive degeneration of 5-HT neurons affecting motoneuron activity constitutes the prime mover of the disease and its progression and treatment of ALS needs to be focused primarily on boosting 5-HT functions (e.g., pharmacologically via its precursors, reuptake inhibitors, selective 5-HT1A receptor agonists/5-HT2 receptor antagonists, and electrically through transcranial administration of AC pulsed picotesla electromagnetic fields) to prevent excessive glutamate activity in the motoneurons. In fact, 5HT1A and 5HT2 receptor agonists have been shown to prevent glutamate-induced neurotoxicity in primary cortical cell cultures and the 5-HT precursor 5-hydroxytryptophan (5-HTP) improved locomotor function and survival of transgenic SOD1 G93A mice, an animal model of ALS.     Neuron. 2005 Jan 20;45(2):181-3.

Toward establishing a therapeutic window for rTMS by theta burst stimulation.

Paulus W.

Department of Clinical Neurophysiology, University of Goettingen, D-37075 Goettingen, Germany.

In this issue of Neuron, Huang et al. show that a version of the classic theta burst stimulation protocol used to induce LTP/LTD in brain slices can be adapted to a transcranial magnetic stimulation (TMS) protocol to rapidly produce long lasting (up to an hour), reversible effects on motor cortex physiology and behavior. These results may have important implications for the development of clinical applications of rTMS in the treatment of depression, epilepsy, Parkinson’s, and other diseases.

Wiad Lek. 2003;56(9-10):434-41.

Application of variable magnetic fields in medicine-15 years experience.

[Article in Polish]

Sieron A, Cieslar G.

Katedra i Klinika Chorob Wewnetrznych, Angiologii i Medycyny Fizykalnej SAM, ul. Batorego 15, 41-902 Bytom. sieron@mediclub.pl

The results of 15-year own experimental and clinical research on application of variable magnetic fields in medicine were presented. In experimental studies analgesic effect (related to endogenous opioid system and nitrogen oxide activity) and regenerative effect of variable magnetic fields with therapeutical parameters was observed. The influence of this fields on enzymatic and hormonal activity, free oxygen radicals, carbohydrates, protein and lipid metabolism, dielectric and rheological properties of blood as well as behavioural reactions and activity of central dopamine receptor in experimental animals was proved. In clinical studies high therapeutic efficacy of magnetotherapy and magnetostimulation in the treatment of osteoarthrosis, abnormal ossification, osteoporosis, nasosinusitis, multiple sclerosis, Parkinson’s disease, spastic paresis, diabetic polyneuropathy and retinopathy, vegetative neurosis, peptic ulcers, colon irritable and trophic ulcers was confirmed.

Adv Anat Embryol Cell Biol. 2003;173:III-IX, 1-77.

Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.

Heida T.

University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, Laboratory of Measurement and Instrumentation, Laboratory of Biomedical Engineering, P.O. Box 217, 7500 AE Enschede, The Netherlands. t.heida@el.utwente.nl

Abstract

Trapping neuronal cells may aid in the creation of the cultured neuron probe. The aim of the development of this probe is the creation of the interface between neuronal cells or tissue in a (human) body and electrodes that can be used to stimulate nerves in the body by an external electrical signal in a very selective way. In this way, functions that were (partially) lost due to nervous system injury or disease may be restored. First, a direct contact between cultured neurons and electrodes is created. This is realized using a microelectrode array (MEA) which can be fabricated using standard photolithographic and etching methods. Section 1 gives an overview of the human nervous system, methods for functional recovery focused on the cultured neuron probe, and the prerequisites for culturing neurons on a microelectrode array. An important aspect in the selective stimulation of neuronal cells is the positioning of cells or a small group of cells on top of each of the electrode sites of the MEA. One of the most efficient methods for trapping neuronal cells is to make use of di-electrophoresis (DEP). Dielectrophoretic forces are created when (polarizable) cells are located in nonuniform electric fields. Depending on the electrical properties of the cells and the suspending medium, the DEP force directs the cells towards the regions of high field strength (positive dielectrophoresis; PDEP) or towards regions of minimal field intensities (negative dielectrophoresis; NDEP). Since neurons require a physiological medium with a sufficient concentration of Na+, the medium conductivity is rather high (~ 1.6 S/m). The result is that negative dielectrophoretic forces are created over the entire frequency range. With the use of a planar quadrupole electrode sturcture negative forces are directed so that in the center of this structure cell can be collected. The process of trapping cortical rat neurons is described in Sect. 2 theoretically and experimentally. Medium and cell properties are frequency-dependent due to relaxation processes, which have a direct influence on the strength of the dielectrophorectic force. On the other hand, the nonideal material properties of the gold electrodes and glass substrate largely determine the electric field strength created inside the medium. Especially, the electrode-medium interface results in a significant loss of the imput signal at lower frequencies (< 1 MHz), and thus a reduction of the electric field strength inside the medium. Furthermore, due to the high medium conductivity, the electric field causes Joule heating. Local temperature rises result in local gradients in fluid density, which induces fluid flow. The electrode-medium interface and induced fluid flow are theoretically investigated with the use of modeling techniques such as finite elements modeling. Experimental and theoretical results agreed with each other on the occurrence of the effects described in this section. For the creation of the cultured neuron probe, preservation of cell viability during the trapping process is a prerequisite. Cell viability of dielectrophoretically trapped neurons has to be investigated. The membrane potential induced by the external field plays a crucial role in preservation of cell viability. The membrane can effectively be represented by a capaticance in parallel woth a low conductance; with increasing frequency and /or decreasing field strength the induced membrane potential decreases. At high induced membrane potentials ths representation for the membrane is no longer valid. At this point membrane breakdown occurs and the normally insulating membrane becomes conductive and permeable. The creation of electropores has been proposed in literature to be the cause of this high permeability state. Pores may grow or many small pores may be created which eventually may lead to membrane rupture, and thus cell death. Membrane breakdown may be reversible, but a chemical imbalance created during the high permeability state may still exist after the resealing of the membrane. This may cause cell death after several hours or even days after field application. Section 3 gives a detailed description of membrane breakdown. Since many investigations on electroporation of lipid bilayers and cell membranes are based on uniform electric fields, a finite element model is used to investigate induced membrane potentials in the nonuniform field created by the quadropole electrode structure. Modeling results are presented in cmbination with the results of breakdown experiments using four frequencies in the range from 100 kHz to 1MHz. Radomly positioned neuronals cells were exposed to stepwise increasing electric field strengths. The field strength at which membrane rupture occurred gives an indication of the maximum induced membrane potential. Due to the nonuniformity of the electric field, cell collapse was expected to be position-dependent. However, at 100 kHz cells collapsed at a break down level of about 0.4 V, in contradistinction to findings at higher frequencies where more variation in breakdown levels were found. Model simulations were able to explain the experimental results. For examining whether the neuronal cells trapped by dielectrophoresis were still viable after the trapping process, the frequency range was divided into two ranges. First, a high frequency (14 MHz) and a rather low signal amplitude (3 Vpp) were used to trap cells. At this high frequency the field-induced membrane potential is small according to the theoretical model, and therefore no real damage is expected. The experimental analysis included the investigation of the growth of the neurons, number and length of the processes (dendrites and axons), and the number of outgrowing (~ viable) versus nonoutgrowing (~ nonviable) neural cells. The experimental results agreed with the expectation. The effect of the use of driving signals with lower frequencies and/or higher amplitudes on cell viability was investigated using a staining method as described in the second part of Sect. 4. Survival chances are not directly linked to the estimated maximum induced membrane potential. The frequency of the dield plays an important role, decreasing frequency lowering the chance of survival. A lower frequency limit of 100 kHz is preferable at field strengths less than 80 k V/m, while with increasing field strength this limit shifts towards higher frequencies. The theoretical and experimental results presented in this review form the inception of the development of new electrode structures for trapping neuronal cells on top of each of the electrodes of the MEA. New ways to investigate cell properties and the phenomenon of electroporation using electrokinetic methods were developed that can be exploited in future research linking cell biology to technology.

Curr Opin Neurol. 2000 Aug;13(4):397-405.

Recent advances in amotrophic lateral sclerosis.

Al-Chalabi A, Leigh PN.

Department of Neurology, Guy’s King’s and St Thomas’ School of Medicine and Institute of Psychiatry, De Crespigny Park, London, UK.

The mechanisms by which mutations of the SOD1 gene cause selective motor neuron death remain uncertain, although interest continues to focus on the role of peroxynitrite, altered peroxidase activity of mutant SOD1, changes in intracellular copper homeostasis, protein aggregation, and changes in the function of glutamate transporters leading to excitotoxicity. Neurofilaments and peripherin appear to play some part in motor neuron degeneration, and amyotrophic lateral sclerosis is occasionally associated with mutations of the neurofilament heavy chain gene. Linkage to several chromosomal loci has been established for other forms of familial amyotrophic lateral sclerosis, but no new genes have been identified. In the clinical field, interest has been shown in the population incidence and prevalence of amyotrophic lateral sclerosis and the clinical variants that cause diagnostic confusion. Transcranial magnetic stimulation has been used to detect upper motor neuron damage and to explore cortical excitability in amyotrophic lateral sclerosis, and magnetic resonance imaging including proton magnetic resonance spectroscopy and diffusion weighted imaging also provide useful information on the upper motor neuron lesion. Aspects of care including assisted ventilation, nutrition, and patient autonomy are addressed, and underlying these themes is the requirement to measure quality of life with a new disease-specific instrument. Progress has been made in developing practice parameters. Riluzole remains the only drug to slow disease progression, although interventions such as non-invasive ventilation and gastrostomy also extend survival.

Int J Neurosci. 1994 Jun;76(3-4):185-225.

Alzheimer’s disease: improvement of visual memory and visuoconstructive performance by treatment with picotesla magnetic fields.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811.

Impairments in visual memory and visuoconstructive functions commonly occur in patients with Alzheimer’s disease (AD). Recently, I reported that external application of electromagnetic fields (EMF) of extremely low intensity (in the picotesla range) and of low frequency (in the range of 5Hz-8Hz) improved visual memory and visuoperceptive functions in patients with Parkinson’s disease. Since a subgroup of Parkinsonian patients, specifically those with dementia, have coexisting pathological and clinical features of AD, I investigated in two AD patients the effects of these extremely weak EMF on visual memory and visuoconstructive performance. The Rey-Osterrieth Complex Figure Test as well as sequential drawings from memory of a house, a bicycle, and a man were employed to evaluate the effects of EMF on visual memory and visuoconstructive functions, respectively. In both patients treatment with EMF resulted in a dramatic improvement in visual memory and enhancement of visuoconstructive performance which was associated clinically with improvement in other cognitive functions such as short term memory, calculations, spatial orientation, judgement and reasoning as well as level of energy, social interactions, and mood. The report demonstrates, for the first time, that specific cognitive symptoms of AD are improved by treatment with EMF of a specific intensity and frequency. The rapid improvement in cognitive functions in response to EMF suggests that some of the mental deficits of AD are reversible being caused by a functional (i.e., synaptic transmission) rather than a structural (i.e., neuritic plaques) disruption of neuronal communication in the central nervous system.

Acupunct Electrother Res. 1992;17(2):107-48.

Common factors contributing to intractable pain and medical problems with insufficient drug intake in areas to be treated, and their pathogenesis and treatment: Part I. Combined use of medication with acupuncture, (+) Qi gong energy-stored material, soft laser or electrical stimulation.

Omura Y, Losco BM, Omura AK, Takeshige C, Hisamitsu T, Shimotsuura Y, Yamamoto S, Ishikawa H, Muteki T, Nakajima H, et al.

Heart Disease Research Foundation, New York.

Most frequently encountered causes of intractable pain and intractable medical problems, including headache, post-herpetic neuralgia, tinnitus with hearing difficulty, brachial essential hypertension, cephalic hypertension and hypotension, arrhythmia, stroke, osteo-arthritis, Minamata disease, Alzheimer’s disease and neuromuscular problems, such as Amyotrophic Lateral Sclerosis, and cancer are often found to be due to co-existence of 1) viral or bacterial infection, 2) localized microcirculatory disturbances, 3) localized deposits of heavy metals, such as lead or mercury, in affected areas of the body, 4) with or without additional harmful environmental electro-magnetic or electric fields from household electrical devices in close vicinity, which create microcirculatory disturbances and reduced acetylcholine. The main reason why medications known to be effective prove ineffective with intractable medical problems, the authors found, is that even effective medications often cannot reach these affected areas in sufficient therapeutic doses, even though the medications can reach the normal parts of the body and result in side effects when doses are excessive. These conditions are often difficult to treat or may be considered incurable in both Western and Oriental medicine. As solutions to these problems, the authors found some of the following methods can improve circulation and selectively enhance drug uptake: 1) Acupuncture, 2) Low pulse repetition rate electrical stimulation (1-2 pulses/second), 3) (+) Qi Gong energy, 4) Soft lasers using Ga-As diode laser or He-Ne gas laser, 5) Certain electro-magnetic fields or rapidly changing or moving electric or magnetic fields, 6) Heat or moxibustion, 7) Individually selected Calcium Channel Blockers, 8) Individually selected Oriental herb medicines known to reduce or eliminate circulatory disturbances. Each method has advantages and limitations and therefore the individually optimal method has to be selected. Applications of (+) Qi Gong energy stored paper or cloth every 4 hours, along with effective medications, were often found to be effective, as Qigongnized materials can often be used repeatedly, as long as they are not exposed to rapidly changing electric, magnetic or electro-magnetic fields. Application of (+) Qi Gong energy-stored paper or cloth, soft laser or changing electric field for 30-60 seconds on the area above the medulla oblongata, vertebral arteries or endocrine representation area at the tail of pancreas reduced or eliminated microcirculatory disturbances and enhanced drug uptake.(ABSTRACT TRUNCATED AT 400 WORDS)

Int J Neurosci. 1991 Aug;59(4):259-62.

Age-related disruption of circadian rhythms: possible relationship to memory impairment and implications for therapy with magnetic fields.

Sandyk R, Anninos PA, Tsagas N.

Department of Psychiatry, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461.

Disorganization of circadian rhythms, a hallmark of aging, may be related causally to the progressive deterioration of memory functions in senescence and possibly Alzheimer’s disease (AD). In experimental animals, disruption of circadian rhythms produces retrograde amnesia by interfering with the circadian organization of memory processes. The circadian system is known to be synchronized to external 24 h periodicities of ambient light by a neural pathway extending from the retina to the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. There is also evidence that the earth’s magnetic field is a time cue (“Zeitgeber”) of circadian organization and that shielding of the ambient magnetic field leads to disorganization of the circadian rhythms in humans. Since aging is associated with a delay of the circadian rhythm phase, and since light, which phase advances circadian rhythms, mimics the effects of magnetic fields on melatonin secretion, we postulate that application of magnetic fields might improve memory functions in the elderly as a result of resynchronization of the circadian rhythms. Moreover, since the circadian rhythm organization is more severely disrupted in patients with AD, it is possible that magnetic treatment might prove useful also in improving memory functions in these patients. If successful, application of magnetic fields might open new avenues in the management of memory disturbances in the elderly and possibly in AD.

Zh Nevropatol Psikhiatr Im S S Korsakova. 1990;90(7):108-12.

Regional cerebral angiodystonia in the practice of a neuropathologist and therapist.

[Article in Russian]

Pokalev GM, Raspopina LA.

Altogether 108 patients with regional cerebral angiodystonia were examined using rheoencephalography, measurements of temporal and venous pressure and functional tests (nitroglycerin and bicycle ergometry). Three variants of abnormalities connected with regional cerebral angiodystonia were distinguished: dysfunction of the inflow, derangement of the venous outflow, and initial functional venous hypertonia. The patients were treated with nonmedicamentous therapy (electroanalgesia, magnetotherapy, iontotherapy).

Rev Neurol. 2004 Feb 16-29;38(4):374-80.

Transcranial magnetic stimulation. Applications in cognitive neuroscience.

[Article in Spanish]

Calvo-Merino B, Haggard P.

Institute of Movement Neuroscience, University College, Londres, UK. b.calvo@ion.ucl.ac.uk

OBJECTIVE: In this review we trace some of the mayor developments in the use of transcranial magnetic stimulation (TMS) as a technique for the investigation of cognitive neuroscience. Technical aspects of the magnetic stimulation are also reviewed.

DEVELOPMENT: Among the many methods now available for studying activity of the human brain, magnetic stimulation is the only technique that allows us to interfere actively with human brain function. At the same time it provides a high degree of spatial and temporal resolution. Standard TMS applications (central motor conduction time, threshold and amplitude of motor evoked potentials) allow the evaluation of the motor conduction in the central nervous system and more complex TMS applications (paired pulse stimulation, silent period) permit study the mechanisms of diseases causing changes in the excitability of cortical areas. These techniques also allow investigation into motor disorder, epilepsy, cognitive function and psychiatric disorders.

CONCLUSIONS: Transcranial magnetic stimulation applications have an important place among the investigative tools to study cognitive functions and neurological and psychiatric disorders. Even so, despite the many published research and clinical studies, a systematic study about the possible diagnostic value and role in neurocognitive rehabilitation of TMS testing need to be realized to offer new possibilities of future applications.

Neuroreport. 2005 Nov 7;16(16):1849-1852.

Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making.

Wout MV, Kahn RS, Sanfey AG, Aleman A.

aDepartment of Psychonomics, Helmholtz Research Institute, University of Utrecht bDepartment of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht cBCN NeuroImaging Center, Groningen, The Netherlands dDepartment of Psychology, University of Arizona, Tucson, Arizona, USA.

Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task. This is restricted to correlational evidence, however, and it remains unclear whether the dorsolateral prefrontal cortex is crucial for strategic decision-making. The present study used repetitive transcranial magnetic stimulation in order to investigate the causal role of the dorsolateral prefrontal cortex in strategic decision-making in the Ultimatum Game. The results showed that repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex resulted in an altered decision-making strategy compared with sham stimulation. We conclude that the dorsolateral prefrontal cortex is causally implicated in strategic decision-making in healthy human study participants.

Trends Cogn Sci. 2005 Nov;9(11):503-5. Epub 2005 Sep 21.

Recharging cognition with DC brain polarization.

Wassermann EM, Grafman J.

Brain Stimulation Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

Electrical direct current (DC) has been applied to the human head throughout history for various reasons and with claims of behavioral effects and clinical benefits. This technique has recently been rediscovered and its effects validated with modern quantitative techniques and experimental designs. Despite the very weak current used, DC polarization applied to specific brain areas can alter verbal fluency, motor learning and perceptual thresholds, and can be used in conjunction with transcranial magnetic stimulation. Compact and safe, this old technique seems poised to allow major advances cognitive science and therapy.

J ECT. 2005 Jun;21(2):88-95.

Transcranial magnetic stimulation in persons younger than the age of 18.

Quintana H.

Department of Psychiatry, Division of Child and Adolescent Psychiatry, Louisiana State University Health Science Center, School of Medicine, New Orleans, Louisiana 70112-2822, USA. Hquint@lsuhsc.edu

OBJECTIVES: To review the use of transcranial magnetic stimulation (single-pulse TMS, paired TMS, and repetitive TMS [rTMS]) in persons younger than the age of 18 years. I discuss the technical differences, as well as the diagnostic, therapeutic, and psychiatric uses of TMS/rTMS in this age group.

METHODS: I evaluated English-language studies from 1993 to August 2004 on nonconvulsive single-pulse, paired, and rTMS that supported a possible role for the use of TMS in persons younger than 18. Articles reviewed were retrieved from the MEDLINE database and Clinical Scientific index.

RESULTS: The 48 studies reviewed involved a total of 1034 children ages 2 weeks to 18 years; 35 of the studies used single-pulse TMS (980 children), 3 studies used paired TMS (20 children), and 7 studies used rTMS (34 children). Three studies used both single and rTMS. However, the number of subjects involved was not reported.

CONCLUSIONS: Single-pulse TMS, paired TMS, and rTMS in persons younger than 18 has been used to examine the maturation/activity of the neurons of various central nervous system tracts, plasticity of neurons in epilepsy, other aspects of epilepsy, multiple sclerosis, myoclonus, transcallosal inhibition, and motor cortex functioning with no reported seizure risk. rTMS has been applied to psychiatric disorders such as ADHD, ADHD with Tourette’s, and depression. Adult studies support an antidepressant effect from repetitive TMS, but there is only one study that has been reported on 7 patients that used rTMS to the left dorsal prefrontal cortex on children/adolescents with depression (5 of the 7 subjects treated responded). Although there are limited studies using rTMS (in 34 children), these studies did not report significant adverse effects or seizures. Repetitive TMS safety, ethical, and neurotoxicity concerns also are discussed.

Biol Psychiatry. 2005 Jun 15;57(12):1597-600.

Transcranial magnetic stimulation-evoked cortical inhibition: a consistent marker of attention-deficit/hyperactivity disorder scores in tourette syndrome.

Gilbert DL, Sallee FR, Zhang J, Lipps TD, Wassermann EM.

Division of Neurology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, OH 45229-3039, USA. d.gilbert@cchmc.org

BACKGROUND: Prior case-control studies using Transcranial Magnetic Stimulation (TMS) to probe the neural inhibitory circuitry of Attention Deficit Hyperactivity Disorder (ADHD), Tourette Syndrome (TS), and Obsessive Compulsive Disorder (OCD), have yielded conflicting results. Using regression analysis in TS patients with tics, ADHD, and/or OCD symptoms, all ranging from none to severe, we previously found that TMS-evoked short interval intracortical inhibition (SICI) correlated inversely with ADHD scores. We sought to validate this observation.

METHODS: We used regression to estimate the consistency of the association between ADHD symptom scores and TMS-evoked SICI at two separate visits in 28 children and adults with TS.

RESULTS: ADHD scores correlated significantly and consistently with SICI, particularly in patients not taking dopamine receptor blockers (r=.60 and r=.58). Hyperactivity, not inattention, scores accounted for ADHD-related variance in SICI.

CONCLUSIONS: SICI reliably reflects the severity of hyperactivity in children and adults with TS.

Child Adolesc Psychiatr Clin N Am. 2005 Jan;14(1):1-19, v.

Emerging brain-based interventions for children and adolescents: overview and clinical perspective.

Hirshberg LM, Chiu S, Frazier JA.

The NeuroDevelopment Center, 260 West Exchange Street, Suite 302, Providence, RI 02903, USA. lhirshberg@neruodevelopmentcenter.com

Electroencephalogram biofeedback (EBF), repetitive transcranial magnetic stimulation (rTMS), and vagal nerve stimulation (VNS) are emerging interventions that attempt to directly impact brain function through neurostimulation and neurofeedback mechanisms. This article provides a brief overview of each of these techniques, summarizes the relevant research findings, and examines the implications of this research for practice standards based on the guidelines for recommending evidence based treatments as developed by the American Academy of Child and Adolescent Psychiatry for attention deficit hyperactivity disorder (ADHD). EBF meets the “Clinical Guidelines” standard for ADHD, seizure disorders, anxiety, depression, and traumatic brain injury. VNS meets this same standard for treatment of refractory epilepsy and meets the lower “Options” standard for several other disorders. rTMS meets the standard for “Clinical Guidelines” for bipolar disorder, unipolar disorder, and schizophrenia. Several conditions are discussed regarding the use of evidence based thinking related to these emerging interventions and future directions.

Curr Med Res Opin. 2003;19(2):125-30.

Repetitive transcranial magnetic stimulation (rTMS): new tool, new therapy and new hope for ADHD.

Acosta MT, Leon-Sarmiento FE.

Department of Neurology, Children’s National Medical Center, Washington, DC, USA.

Attention-deficit hyperactivity disorder (ADHD) is the most common developmental disorder that is associated with environmental and genetic factors. Neurobiological evidence suggests that fronto-striatum-cerebellum circuit abnormalities, mainly in the right hemisphere, are responsible for most of the disturbed sensorimotor integration; dopamine seems to be the main neurochemical alteration underlying these morphological abnormalities. Different conventional treatments have been employed on ADHD; however, repetitive transcranial magnetic stimulation (rTMS), a new and useful option for the clinical/research investigation of several neuropsychiatric disorders involving dopamine circuits, has yet to be considered as a therapeutic tool and possible drug-free option for ADHD. Here the authors explore the available evidence that makes this tool a rational therapeutic possibility for patients with ADHD, calling attention to safety issues, while highlighting the potentials of such an approach and the new hope it may bring for patients, parents, researchers and clinicians. The authors advocate carefully conducted clinical trials to investigate efficacy, safety, cost-effectiveness and clinical utility of rTMS for ADHD patients – in comparison to both placebo and standard treatments.

Clin Neurophysiol. 2003 Nov;114(11):2036-42.

Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD).

Buchmann J, Wolters A, Haessler F, Bohne S, Nordbeck R, Kunesch E.

Department of Child and Adolescence Neuropsychiatry, Centre of Nerve Disease, University of Rostock, Gehlsdorfer Strasse 20, 18147 Rostock, Germany.

OBJECTIVE: The aim of this study was to investigate mechanisms of motor-cortical excitability and inhibition which may contribute to motor hyperactivity in children with attention deficit hyperactivity disorder (ADHD).

METHODS: Using transcranial magnetic stimulation (TMS), involvement of the motor cortex and the corpus callosum was analysed in 13 children with ADHD and 13 sex- and age-matched controls. Contralateral silent period (cSP) and transcallosally mediated ipsilateral silent period (iSP) were investigated.

RESULTS: Resting motor threshold (RMT), amplitudes of motor evoked potentials (MEP) and cSP were similar in both groups whereas iSP-latencies were significantly longer (p<0.05) and their duration shorter (p<0.01) in the ADHD group. For the ADHD group iSP duration tended to increase and iSP latency to decrease with age (n.s.). Conners-Scores did neither correlate with iSP-latencies and -duration nor with children’s age.

CONCLUSIONS: The shortened duration of iSP in ADHD children could be explained by an imbalance of inhibitory and excitatory drive on the neuronal network between cortex layer III-the projection site of transcallosal motor-cortical fibers-and layer V, the origin of the pyramidal tract. The longer iSP-latencies might be the result of defective myelination of fast conducting transcallosal fibers in ADHD. iSP may be a useful supplementary diagnostic tool to discriminate between ADHD and normal children.

J Child Neurol. 2001 Dec;16(12):891-4.

Subjective reactions of children to single-pulse transcranial magnetic stimulation.

Garvey MA, Kaczynski KJ, Becker DA, Bartko JJ.

Pediatric Movement Disorders Unit, Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1255, USA. garveym@intra.nimh.nih.gov

Single-pulse transcranial magnetic stimulation is a useful tool to investigate cortical function in childhood neuropsychiatric disorders. Magnetic stimulation is associated with a shock-like sensation that is considered painless in adults. Little is known about how children perceive the procedure. We used a self-report questionnaire to assess children’s subjective experience with transcranial magnetic stimulation. Normal children and children with attention-deficit hyperactivity disorder (ADHD) underwent transcranial magnetic stimulation in a study of cortical function in ADHD. Subjects were asked to rate transcranial magnetic stimulation on a 1 to 10 scale (most disagreeable = 1, most enjoyable = 10) and to rank it among common childhood events. Thirty-eight subjects completed transcranial magnetic stimulation; 34 said that they would repeat it. The overall rating for transcranial magnetic stimulation was 6.13, and transcranial magnetic stimulation was ranked fourth highest among the common childhood events. These results suggest that although a few children find transcranial magnetic stimulation uncomfortable, most consider transcranial magnetic stimulation painless. Further studies are necessary to confirm these findings.

Int J Neurosci. 1994 Jun;76(3-4):185-225.

Alzheimer’s disease: improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811.

Impairments in visual memory and visuoconstructive functions commonly occur in patients with Alzheimer’s disease (AD). Recently, I reported that external application of electromagnetic fields (EMF) of extremely low intensity (in the picotesla range) and of low frequency (in the range of 5Hz-8Hz) improved visual memory and visuoperceptive functions in patients with Parkinson’s disease. Since a subgroup of Parkinsonian patients, specifically those with dementia, have coexisting pathological and clinical features of AD, I investigated in two AD patients the effects of these extremely weak EMF on visual memory and visuoconstructive performance. The Rey-Osterrieth Complex Figure Test as well as sequential drawings from memory of a house, a bicycle, and a man were employed to evaluate the effects of EMF on visual memory and visuoconstructive functions, respectively. In both patients treatment with EMF resulted in a dramatic improvement in visual memory and enhancement of visuoconstructive performance which was associated clinically with improvement in other cognitive functions such as short term memory, calculations, spatial orientation, judgement and reasoning as well as level of energy, social interactions, and mood. The report demonstrates, for the first time, that specific cognitive symptoms of AD are improved by treatment with EMF of a specific intensity and frequency. The rapid improvement in cognitive functions in response to EMF suggests that some of the mental deficits of AD are reversible being caused by a functional (i.e., synaptic transmission) rather than a structural (i.e., neuritic plaques) disruption of neuronal communication in the central nervous system.

Int J Neurosci. 1991 Aug;59(4):259-62.

Age-related disruption of circadian rhythms: possible relationship to memory impairment and implications for therapy with magnetic fields.

Sandyk R, Anninos PA, Tsagas N.

Department of Psychiatry, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461.

Disorganization of circadian rhythms, a hallmark of aging, may be related causally to the progressive deterioration of memory functions in senescence and possibly Alzheimer’s disease (AD). In experimental animals, disruption of circadian rhythms produces retrograde amnesia by interfering with the circadian organization of memory processes. The circadian system is known to be synchronized to external 24 h periodicities of ambient light by a neural pathway extending from the retina to the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. There is also evidence that the earth’s magnetic field is a time cue (“Zeitgeber”) of circadian organization and that shielding of the ambient magnetic field leads to disorganization of the circadian rhythms in humans. Since aging is associated with a delay of the circadian rhythm phase, and since light, which phase advances circadian rhythms, mimics the effects of magnetic fields on melatonin secretion, we postulate that application of magnetic fields might improve memory functions in the elderly as a result of resynchronization of the circadian rhythms. Moreover, since the circadian rhythm organization is more severely disrupted in patients with AD, it is possible that magnetic treatment might prove useful also in improving memory functions in these patients. If successful, application of magnetic fields might open new avenues in the management of memory disturbances in the elderly and possibly in AD.

Clin EEG Neurosci. 2004 Jan;35(1):4-13.

Current status of the utilization of antileptic treatments in mood, anxiety and aggression: drugs and devices.

Barry JJ, Lembke A, Bullock KD.

Department of Psychiatry, Stanford University Medical Center, 401 Quarry Road MC 5723, Stanford, CA 94305, USA. jbarry@leland.stanford.edu

Interventions that have been utilized to control seizures in people with epilepsy have been employed by the psychiatric community to treat a variety of disorders. The purpose of this review will be to give an overview of the most prominent uses of antiepileptic drugs (AEDs) and devices like the Vagus Nerve Stimulator (VNS) and Transcranial Magnetic Stimulation (TMS) in the treatment of psychiatric disease states. By far, the most prevalent use of these interventions is in the treatment of mood disorders. AEDs have become a mainstay in the effective treatment of Bipolar Affective Disorder (BAD). The U.S. Food and Drug Administration has approved the use of valproic acid for acute mania, and lamotrigine for BAD maintenance therapy. AEDs are also effectively employed in the treatment of anxiety and aggressive disorders. Finally, VNS and TMS are emerging as possibly useful tools in the treatment of more refractory depressive illness.

Am J Psychiatry. 2004 Jan;161(1):93-8.

Low-field magnetic stimulation in bipolar depression using an MRI-based stimulator.

Rohan M, Parow A, Stoll AL, Demopulos C, Friedman S, Dager S, Hennen J, Cohen BM, Renshaw PF.

Brain Imaging Center, McLean Hospital, Belmont, MA 02478, USA. mrohan@mclean.harvard.edu

OBJECTIVE: Anecdotal reports have suggested mood improvement in patients with bipolar disorder immediately after they underwent an echo-planar magnetic resonance spectroscopic imaging (EP-MRSI) procedure that can be performed within clinical MR system limits. This study evaluated possible mood improvement associated with this procedure.

METHOD: The mood states of subjects in an ongoing EP-MRSI study of bipolar disorder were assessed by using the Brief Affect Scale, a structured mood rating scale, immediately before and after an EP-MRSI session. Sham EP-MRSI was administered to a comparison group of subjects with bipolar disorder, and actual EP-MRSI was administered to a comparison group of healthy subjects. The characteristics of the electric fields generated by the EP-MRSI scan were analyzed.

RESULTS: Mood improvement was reported by 23 of 30 bipolar disorder subjects who received the actual EP-MRSI examination, by three of 10 bipolar disorder subjects who received sham EP-MRSI, and by four of 14 healthy comparison subjects who received actual EP-MRSI. Significant differences in mood improvement were found between the bipolar disorder subjects who received actual EP-MRSI and those who received sham EP-MRSI, and, among subjects who received actual EP-MRSI, between the healthy subjects and the bipolar disorder subjects and to a lesser extent between the unmedicated bipolar disorder subjects and the bipolar disorder subjects who were taking medication. The electric fields generated by the EP-MRSI scan were smaller (0.7 V/m) than fields used in repetitive transcranial magnetic stimulation (rTMS) treatment of depression (1-500 V/m) and also extended uniformly throughout the head, unlike the highly nonuniform fields used in rTMS. The EP-MRSI waveform, a 1-kHz train of monophasic trapezoidal gradient pulses, differed from that used in rTMS.

CONCLUSIONS: These preliminary data suggest that the EP-MRSI scan induces electric fields that are associated with reported mood improvement in subjects with bipolar disorder. The findings are similar to those for rTMS depression treatments, although the waveform used in EP-MRSI differs from that used in rTMS. Further investigation of the mechanism of EP-MRSI is warranted.

Psychiatry Res. 2004 Sep 30;128(2):199-202.

Repetitive transcranial magnetic stimulation as an add-on therapy in the treatment of mania: a case series of eight patients.

Saba G, Rocamora JF, Kalalou K, Benadhira R, Plaze M, Lipski H, Januel D.

Unite de recherche clinique, secteur III de Ville Evrard, 5, Rue du Dr Delafontaine, Saint-Denis, 93200 France. urcve@free.fr

The aim of this study is to assess the efficacy of repetitive transcranial magnetic stimulation (rTMS) as an add-on therapy in the treatment of manic bipolar patients. Eight patients were enrolled in an open trial. They received fast rTMS (five trains of 15 s, 80% of the motor threshold, 10 Hz) over the right dorsolateral prefrontal cortex (DLPFC). They were evaluated using the Mania Assessment Scale (MAS) and the Clinical Global Impression (CGI) at baseline and at day 14. All patients were taking medication during the treatment trial. There was a significant improvement of manic symptoms at the end of the trial. No side effects were reported. The results show a significant improvement of mania when patients are treated with fast rTMS over the right DLPFC. However, these results have to be interpreted with caution since they derive from an open case series and all the subjects were taking psychotropic medication during rTMS treatment. Double-blind controlled studies with a sham comparison condition should be conducted to investigate the efficiency of this treatment in manic bipolar disorders.

J Affect Disord. 2004 Mar;78(3):253-7.

Treatment of bipolar mania with right prefrontal rapid transcranial magnetic stimulation.

Michael N, Erfurth A.

Mood Disorders Unit, Department of Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, 48129 Muenster, Germany.

BACKGROUND: Transcranial magnetic stimulation (TMS) has been suggested for the treatment of a variety of CNS disorders including depression and mania.

METHODS: Nine bipolar (I) in-patients diagnosed with mania were treated with right prefrontal rapid TMS in an open and prospective study. Eight of nine patients received TMS as add-on treatment to an insufficient or only partially effective drug therapy.

RESULTS: During the 4 weeks of TMS treatment a sustained reduction of manic symptoms as measured by the Bech-Rafaelsen mania scale (BRMAS) was observed in all patients.

LIMITATIONS: Due to the open and add-on design of the study, a clear causal relationship between TMS treatment and reduction of manic symptoms cannot be established.

CONCLUSIONS: Our data suggest that right prefrontal rapid TMS is safe and efficacious in the add-on treatment of bipolar mania showing laterality opposed to the proposed effect of rapid TMS in depression.

Bipolar Disord. 2003 Feb;5(1):40-7.

Left prefrontal transcranial magnetic stimulation (TMS) treatment of depression in bipolar affective disorder: a pilot study of acute safety and efficacy.

Nahas Z, Kozel FA, Li X, Anderson B, George MS.

Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston 29425, USA.

OBJECTIVES: Repetitive transcranial magnetic stimulation (rTMS) has been shown to improve depressive symptoms. We designed and carried out the following left prefrontal rTMS study to determine the safety, feasibility, and potential efficacy of using TMS to treat the depressive symptoms of bipolar affective disorder (BPAD).

METHODS: We recruited and enrolled 23 depressed BPAD patients (12 BPI depressed state, nine BPII depressed state, two BPI mixed state). Patients were randomly assigned to receive either daily left prefrontal rTMS (5 Hz, 110% motor threshold, 8 sec on, 22 sec off, over 20 min) or placebo each weekday morning for 2 weeks. Motor threshold and subjective rating scales were obtained daily, and blinded Hamilton Rating Scale for Depression (HRSD) and Young Mania Rating Scales (YMRS) were obtained weekly.

RESULTS: Stimulation was well tolerated with no significant adverse events and with no induction of mania. We failed to find a statistically significant difference between the two groups in the number of antidepressant responders (>50% decline in HRSD or HRSD <10 – 4 active and 4 sham) or the mean HRSD change from baseline over the 2 weeks (t = -0.22, p = 0.83). Active rTMS, compared with sham rTMS, produced a trend but not statistically significant greater improvement in daily subjective mood ratings post-treatment (t = 1.58, p = 0.13). The motor threshold did not significantly change after 2 weeks of active treatment (t = 1.11, p = 0.28).

CONCLUSIONS: Daily left prefrontal rTMS appears safe in depressed BPAD subjects, and the risk of inducing mania in BPAD subjects on medications is small. We failed to find statistically significant TMS clinical antidepressant effects greater than sham. Further studies are needed to fully investigate the potential role, if any, of TMS in BPAD depression.

CNS Drugs. 2002;16(1):47-63.

The Bech-Rafaelsen Mania Scale in clinical trials of therapies for bipolar disorder: a 20-year review of its use as an outcome measure.

Bech P.

Psychiatric Research Unit, WHO Collaborating Centre for Mental Health, Frederiksborg General Hospital, Hillerod, Denmark. pebe@fa.dk

Over the last two decades the Bech-Rafaelsen Mania Scale (MAS) has been used extensively in trials that have assessed the efficacy of treatments for bipolar disorder. The extent of its use makes it possible to evaluate the psychometric properties of the scale according to the principles of internal validity, reliability, and external validity. Studies of the internal validity of the MAS have demonstrated that the simple sum of the 11 items of the scale is a sufficient statistic for the assessment of the severity of manic states. Both factor analysis and latent structure analysis (the Rasch analysis) have been used to demonstrate this. The total score of the MAS has been standardised such that scores below 15 indicate hypomania, scores around 20 indicate moderate mania, and scores around 28 indicate severe mania. The inter-observer reliability has been found to be high in a number of studies conducted in various countries. The MAS has shown an acceptable external validity, in terms of both sensitivity and responsiveness. Thus, the MAS was found to be superior to the Clinical Global Impression scale with regard to responsiveness, and sensitivity has been found to be adequate, with the MAS able to demonstrate large drug-placebo differences. Based on pretreatment scores, trials of antimanic therapies can be classified into: (i) ultrashort (1 week) therapy of severe mania; (ii) short-term therapy (3 to 8 weeks) of moderate mania; (iii) short-term therapy of hypomanic or mixed bipolar states; and (iv) long-term (12 months) therapy of bipolar states. The responsiveness of MAS is such that the scale has been able to demonstrated that typical antipsychotics are effective as an ultrashort therapy of severe mania; that lithium and anticonvulsants are effective in the short-term therapy of moderate mania; and that atypical antipsychotics, electroconvulsive therapy (ECT) and transcranial magnetic stimulation seem to have promising effects in the short-term therapy of moderate mania. In contrast, the scale has been used to demonstrate that calcium antagonists (e.g. verapamil) are ineffective in the treatment of mania. MAS has also been used to add to the literature on the evidence-based effect of lithium as a short-term therapy for hypomania or mixed bipolar states and as a long-term therapy of bipolar states.

Altern Ther Health Med. 2006 Sep-Oct;12(5):42-9

Regenerative effects of pulsed magnetic field on injured peripheral nerves.

  • Mert T,
  • Gunay I,
  • Gocmen C,
  • Kaya M,
  • Polat S.

Department of Biophysics, University of Cukurova School of Medicine, Adana, Turkey.

Previous studies confirm that pulsed magnetic field (PMF) accelerates functional recovery after a nerve crush lesion. The contention that PMF enhances the regeneration is still controversial, however. The influence of a new PMF application protocol (trained PMF) on nerve regeneration was studied in a model of crush injury of the sciatic nerve of rats. To determine if exposure to PMF influences regeneration, we used electrophysiological recordings and ultrastructural examinations. After the measurements of conduction velocity, the sucrose-gap method was used to record compound action potentials (CAPs) from sciatic nerves. PMF treatment during the 38 days following the crush injury enhanced the regeneration. Although the axonal ultrastructures were generally normal, slight to moderate myelin sheath degeneration was noted at the lesion site. PMF application for 38 days accelerated nerve conduction velocity, increased CAP amplitude and decreased the time to peak of the CAP. Furthermore, corrective effects of PMF on. the abnormal characteristics of sensory nerve fibers were determined. Consequently, long-periodic trained-PMF may promote both morphological and electrophysiological properties of the injured nerves. In addition, corrective effects of PMF on sensory fibers may be considered an important finding for neuropathic pain therapy.

Bioelectromagnetics. 2005 Jan;26(1):20-7.

Pulsed electromagnetic fields induce peripheral nerve regeneration and endplate enzymatic changes.

De Pedro JA, Perez-Caballer AJ, Dominguez J, Collia F, Blanco J, Salvado M.

Department of Orthopaedics, University Hospital of Salamanca, Salamanca, Spain. jpedrom@usal.es

An experimental study was carried out in rats with the purpose of demonstrating the capacity of pulsed electromagnetic fields (PEMFs) to stimulate regeneration of the peripheral nervous system (PNS). Wistar and Brown Norway (BN) rats were used. Direct sciatic nerve anastomoses were performed after section or allograft interposition. Treatment groups then received 4 weeks of PEMFs. Control groups received no stimulation. The evaluation of the results was carried out by quantitative morphometric analysis, demonstrating a statistically significant increase in regeneration indices (P < 0.05) in the stimulated groups (9000 +/- 5000 and 4000 +/- 6000) compared to the non-stimulated groups (2000 +/- 4000 and 700 +/- 200). An increase of NAD specific isocitrate dehydrogenase (IDH) activity was found along with an increase in the activity of acetyl cholinesterase at the motor plate. The present study might lead to the search for new alternatives in the stimulation of axonal regenerative processes in the PNS and other possible clinical applications. 2004 Wiley-Liss, Inc.

Spine. 2003 Dec 15;28(24):2660-6.

Exposure to pulsed magnetic field enhances motor recovery in cats after spinal cord injury.

Crowe MJ, Sun ZP, Battocletti JH, Macias MY, Pintar FA, Maiman DJ.

Neuroscience Research Laboratories, The Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA. mcrowe@mcw.edu

STUDY DESIGN: Animal model study of eight healthy commercial cats was conducted.

OBJECTIVE: To determine whether pulsed electromagnetic field (PMF) stimulation results in improvement of function after contusive spinal cord injury in cats. SUMMARY OF

BACKGROUND DATA: PMF stimulation has been shown to enhance nerve growth, regeneration, and functional recovery of peripheral nerves. Little research has been performed examining the effects of PMF stimulation on the central nervous system and no studies of PMF effects on in vivo spinal cord injury (SCI) models have been reported.

MATERIALS AND METHODS: PMF stimulation was noninvasively applied for up to 12 weeks to the midthoracic spine of cats with acute contusive spinal cord injury. The injury was produced using a weight-drop apparatus. Motor functions were evaluated with the modified Tarlov assessment scale. Morphologic analyses of the injury sites and somatosensory-evoked potential measurements were conducted to compare results between PMF-stimulated and control groups.

RESULTS: There was a significant difference in locomotor recovery between the PMF-stimulated and control groups. Although not statistically significant, PMF-stimulated spinal cords demonstrated greater sparing of peripheral white matter and smaller lesion volumes compared to controls. Somatosensory-evoked potential measurements indicated that the PMF-stimulated group had better recovery of preinjury waveforms than the control group; however, this observation also was not statistically significant because of the small sample size.

CONCLUSIONS: This preliminary study indicates that pulsed magnetic fields may have beneficial effects on motor function recovery and lesion volume size after acute spinal cord injury.

J Neurosci Res. 1999 Jan 15;55(2):230-7.

Electromagnetic fields influence NGF activity and levels following sciatic nerve transection.

Longo FM, Yang T, Hamilton S, Hyde JF, Walker J, Jennes L, Stach R, Sisken BF.

Department of Neurology, UCSF/VAMC, San Francisco, California, USA. LFM@itsa.UCSF.edu

Pulsed electromagnetic fields (PEMF) have been shown to increase the rate of nerve regeneration. Transient post-transection loss of target-derived nerve growth factor (NGF) is one mechanism proposed to signal induction of early nerve regenerative events. We tested the hypothesis that PEMF alter levels of NGF activity and protein in injured nerve and/or dorsal root ganglia (DRG) during the first stages of regeneration (6-72 hr). Rats with a transection injury to the midthigh portion of the sciatic nerve on one side were exposed to PEMF or sham control PEMF for 4 hr/day for different time periods. NGF-like activity was determined in DRG, in 5-mm nerve segments proximal and distal to the transection site and in a corresponding 5-mm segment of the contralateral nonoperated nerve. NGF-like activity of coded tissue samples was measured in a blinded fashion using the chick DRG sensory neuron bioassay. Overall, PEMF caused a significant decrease in NGF-like activity in nerve tissue (P < 0.02, repeated measures analysis of variance, ANOVA) with decreases evident in proximal, distal, and contralateral nonoperated nerve. Unexpectedly, transection was also found to cause a significant (P=0.001) 2-fold increase in DRG NGF-like activity between 6 and 24 hr postinjury in contralateral but not ipsilateral DRG. PEMF also reduced NGF-like activity in DRG, although this decrease did not reach statistical significance. Assessment of the same nerve and DRG samples using ELISA and NGF-specific antibodies confirmed an overall significant (P < 0.001) decrease in NGF levels in PEMF-treated nerve tissue, while no decrease was detected in DRG or in nerve samples harvested from PEMF-treated uninjured rats. These findings demonstrate that PEMF can affect growth factor activity and levels, and raise the possibility that PEMF might promote nerve regeneration by amplifying the early postinjury decline in NGF activity.

Neurosci Behav Physiol. 1998 Sep-Oct;28(5):594-7.

Magnetic and electrical stimulation in the rehabilitative treatment of patients with organic lesions of the nervous system.

Tyshkevich TG, Nikitina VV.

A. L. Polenov Russian Science Research Neurosurgical Institute, St. Petersburg.

Studies were performed on 89 patients with organic lesions of the nervous system in which the leading clinical symptoms consisted of paralysis and pareses. Patients received complex treatment, including pulsed magnetic fields and an electrical stimulation regime producing multilevel stimulation. A control group of 49 patients with similar conditions was included, and these patients received only sinusoidal currents. Combined treatment with magnetic and electrical stimulation was more effective, as indicated by radiographic and electromyographic investigations.

Arch Otolaryngol Head Neck Surg. 1998 Apr;124(4):383-9.

Effect of pulsed electromagnetic stimulation on facial nerve regeneration.

Byers JM, Clark KF, Thompson GC.

Department of Otorhinolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.

OBJECTIVE: To determine if exposure to electromagnetic fields influences regeneration of the transected facial nerve in the rat.

DESIGN AND METHODS: The left facial nerve was transected in the tympanic section of the fallopian canal in 24 rats randomly assigned to 2 groups. The cut ends of the facial nerve were reapproximated without sutures within the fallopian canal to maximize the potential for regeneration. Rats in the experimental group (n= 12) were then exposed to pulsed electromagnetic stimulation (0.4 millitesla at 120 Hz) for 4 hours per day, 5 days per week, for 8 weeks. Rats in the control group (n=12) were handled in an identical manner without pulsed electromagnetic stimulation. Four other rats were given sham operations in which all surgical procedures were carried out except for the actual nerve transection. Two of these rats were placed in each group. Nerve regeneration was evaluated using electroneurography (compound action potentials), force of whisker and eyelid movements, and voluntary facial movements before and at 2-week intervals after transection. Histological evaluation was performed at 10 weeks after transection. Each dependent variable was analyzed using a 2-way analysis of variance with 1 between variable (groups) and 1 within repeated measures variable (days after transection).

RESULTS: Statistical analysis indicated that N1 (the negative deflection of depolarization phase of the muscle and/or nerve fibers) area, N1 amplitude, and N1 duration, as well as absolute amplitude of the compound action potentials, were all significantly greater 2 weeks after transection in the experimental than in the control group of rats. The force of eye and whisker movements after electrical stimulation was statistically greater in the experimental group of rats 4 weeks after transection. Voluntary eye movements in the experimental group were significantly better at 5 and 10 weeks, while whisker movements were better at 3 and 10 weeks. There was no statistical difference between the 2 groups for any histological variable.

CONCLUSION: Results of this study indicate that pulsed electromagnetic stimulation enhances early regeneration of the transected facial nerve in rats.

J Cell Biochem. 1993 Apr;51(4):387-93.

Beneficial effects of electromagnetic fields.

Bassett CA.

Bioelectric Research Center, Columbia University, Riverdale, New York 10463.

Selective control of cell function by applying specifically configured, weak, time-varying magnetic fields has added a new, exciting dimension to biology and medicine. Field parameters for therapeutic, pulsed electromagnetic field (PEMFs) were designed to induce voltages similar to those produced, normally, during dynamic mechanical deformation of connective tissues. As a result, a wide variety of challenging musculoskeletal disorders have been treated successfully over the past two decades. More than a quarter million patients with chronically ununited fractures have benefitted, worldwide, from this surgically non-invasive method, without risk, discomfort, or the high costs of operative repair. Many of the athermal bioresponses, at the cellular and subcellular levels, have been identified and found appropriate to correct or modify the pathologic processes for which PEMFs have been used. Not only is efficacy supported by these basic studies but by a number of double-blind trials. As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggest possible benefits in controlling malignancy.

Bioelectromagnetics. 1993;14(4):353-9.

Pretreatment of rats with pulsed electromagnetic field enhances regeneration of the sciatic nerve.

Kanje M, Rusovan A, Sisken B, Lundborg G.

Department of Animal Physiology, University of Lund, Sweden.

Regeneration of the sciatic nerve was studied in rats pretreated in a pulsed electromagnetic field (PEMF). The rats were exposed between a pair of Helmholtz coils at a pulse repetition rate of 2 pps at a field density of 60 or 300 microT. The PEMF treatment was then discontinued. After an interval of recovery, regeneration of the sciatic nerve was initiated by a crush lesion. Regeneration of sensory fibers was measured by the “pinch test” after an additional 3-6 days. A variety of PEMF pretreatments including 4 h/day for 1-4 days or exposure for 15 min/day during 2 days resulted in an increased regeneration distance, measured 3 days after the crush lesion. This effect could be demonstrated even after a 14-day recovery period. In contrast, pretreatment for 4 h/day for 2 days at 60 microT did not affect the regeneration distance. The results showed that PEMF pretreatment conditioned the rat sciatic nerve in a manner similar to that which occurs after a crush lesion, which indicates that PEMF affects the neuronal cell body. However, the mechanism of this effect remains obscure.

Brain Res. 1989 Apr 24;485(2):309-16.

Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields.

Sisken BF, Kanje M, Lundborg G, Herbst E, Kurtz W.

Center for Biomedical Engineering, University of Kentucky, Lexington 40506.

The effects of pulsed electromagnetic fields (PEMF) on rat sciatic nerve regeneration after a crush lesion were determined. The rats were placed between a pair of Helmholtz coils and exposed to PEMF of frequency 2 Hz and magnetic flux density of 0.3 mT. A 4 h/day treatment for 3-6 days increased the rate of nerve regeneration by 22%. This stimulatory effect was independent of the orientation of the coils. Exposure times of 1 h/day-10 h/day were equally effective in stimulating nerve regeneration. Rats exposed to PEMF for 4 h/day for 7 days before crush, followed by 3 days after crush without PEMF, also showed significantly increased regeneration. This pre-exposure ‘conditioning’ effect suggests that PEMF influences regeneration indirectly.

J Hand Surg [Br]. 1984 Jun;9(2):105-12.

An experimental study of the effects of pulsed electromagnetic field (Diapulse) on nerve repair.

Raji AM.

This study investigates the effects of a pulsed electromagnetic field (PEMF) (Diapulse) on experimentally divided and sutured common peroneal nerves in rats. Evidence is presented to show that PEMF accelerates recovery of use of the injured limb and enhances regeneration of damaged nerves.

Clin Orthop Relat Res. 1983 Dec;(181):283-90.

Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat.

Ito H, Bassett CA.

The short- and long-term effects of pulsed electromagnetic fields (PEMFs) on the rate and quality of peripheral nerve regeneration were studied. High bilateral transections of rat sciatic nerves were surgically approximated (a 1-mm gap was left) and shielded with a Silastic sleeve. Animals were exposed to PEMFs for two to 14 weeks after operation. Three groups of 20 rats each (control rats and rats undergoing 12- and 24-hour/day PEMF exposure) were killed at two weeks. Histologically, regenerating axons had penetrated the distal stump nearly twice as far in the PEMF-exposed animals as in the control animals. Return of motor function was judged two to 14 weeks after operation by the load cell-measured, plantar-flexion force produced by neural stimulation proximal to the transection site. Motor function returned earlier in experimental rats and to significantly higher load levels than in control rats. Nerves from animals functioning 12-14 weeks after operation had less interaxonal collagen, more fiber-containing axis cylinders, and larger fiber diameters in the PEMF-exposed group than in the control rats. Histologic and functional data indicate that PEMFs improve the rate and quality of peripheral nerve regeneration in the severed rat sciatic nerve by a factor of approximately two.

Paraplegia. 1976 May;14(1):12-20.

Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field.

Wilson DH, Jagadeesh P.

Peripheral nerve section and suture was performed in 132 rats. Postoperatively half the animals were exposed to a pulsed electromagnetic field each day and half were kept as controls. Nerve conduction studies, histology and nerve fibre counts all indicated an increased rate of regeneration in the treated animals. A similar controlled study of spinal cord regeneration following hemicordotomy in cats has been started, and preliminary results indicate that when the animals are sacrificed three months after the hemicordotomy, the pulsed electromagnetic therapy has induced nerve fibre regeneration across the region of the scar.

Altern Ther Health Med. 2006 Sep-Oct;12(5):42-9

Regenerative effects of pulsed magnetic field on injured peripheral nerves.

Mert T, Gunay I, Gocmen C, Kaya M, Polat S.

Department of Biophysics, University of Cukurova School of Medicine, Adana, Turkey.

Previous studies confirm that pulsed magnetic field (PMF) accelerates functional recovery after a nerve crush lesion. The contention that PMF enhances the regeneration is still controversial, however. The influence of a new PMF application protocol (trained PMF) on nerve regeneration was studied in a model of crush injury of the sciatic nerve of rats. To determine if exposure to PMF influences regeneration, we used electrophysiological recordings and ultrastructural examinations. After the measurements of conduction velocity, the sucrose-gap method was used to record compound action potentials (CAPs) from sciatic nerves. PMF treatment during the 38 days following the crush injury enhanced the regeneration. Although the axonal ultrastructures were generally normal, slight to moderate myelin sheath degeneration was noted at the lesion site. PMF application for 38 days accelerated nerve conduction velocity, increased CAP amplitude and decreased the time to peak of the CAP. Furthermore, corrective effects of PMF on. the abnormal characteristics of sensory nerve fibers were determined. Consequently, long-periodic trained-PMF may promote both morphological and electrophysiological properties of the injured nerves. In addition, corrective effects of PMF on sensory fibers may be considered an important finding for neuropathic pain therapy.

Neurorehabil Neural Repair. 2004 Mar;18(1):42-6.

Pulsed magnetic field therapy in refractory neuropathic pain secondary to peripheral neuropathy: electrodiagnostic parameters–pilot study.

Weintraub MI, Cole SP.

New York Medical College, Briarcliff Manor, New York 10510, USA.

CONTEXT: Neuropathic pain (NP) from peripheral neuropathy (PN) arises from ectopic firing of unmyelinated C-fibers with accumulation of sodium and calcium channels. Because pulsed electromagnetic fields (PEMF) safely induce extremely low frequency (ELF) quasirectangular currents that can depolarize, repolarize, and hyperpolarize neurons, it was hypothesized that directing this energy into the sole of one foot could potentially modulate neuropathic pain.

OBJECTIVE: To determine if 9 consecutive 1-h treatments in physician’s office (excluding weekends) of a pulsed signal therapy can reduce NP scores in refractory feet with PN.

DESIGN/SETTING/PATIENTS: 24 consecutive patients with refractory and symptomatic PN from diabetes, chronic inflammatory demyelinating polyneuropathy (CIDP), pernicious anemia, mercury poisoning, paraneoplastic syndrome, tarsal tunnel, and idiopathic sensory neuropathy were enrolled in this nonplacebo pilot study. The most symptomatic foot received therapy. Primary endpoints were comparison of VAS scores at the end of 9 days and the end of 30 days follow-up compared to baseline pain scores. Additionally, Patients’ Global Impression of Change (PGIC) questionnaire was tabulated describing response to treatment. Subgroup analysis of nerve conduction scores, quantified sensory testing (QST), and serial examination changes were also tabulated. Subgroup classification of pain (Serlin) was utilized to determine if there were disproportionate responses.

INTERVENTION: Noninvasive pulsed signal therapy generates a unidirectional quasirectangular waveform with strength about 20 gauss and a frequency about 30 Hz into the soles of the feet for 9 consecutive 1-h treatments (excluding weekends). The most symptomatic foot of each patient was treated.

RESULTS: All 24 feet completed 9 days of treatment. 15/24 completed follow-up (62%) with mean pain scores decreasing 21% from baseline to end of treatment (P=0.19) but with 49% reduction of pain scores from baseline to end of follow-up (P<0.01). Of this group, self-reported PGIC was improved 67% (n=10) and no change was 33% (n=5). An intent-to-treat analysis based on all 24 feet demonstrated a 19% reduction in pain scores from baseline to end of treatment (P=0.10) and a 37% decrease from baseline to end of follow-up (P<0.01). Subgroup analysis revealed 5 patients with mild pain with nonsignificant reduction at end of follow-up. Of the 19 feet with moderate to severe pain, there was a 28% reduction from baseline to end of treatment (P<0.05) and a 39% decrease from baseline to end of follow-up (P<0.01). Benefit was better in those patients with axonal changes and advanced CPT baseline scores. The clinical examination did not change. There were no adverse events or safety issues.

CONCLUSIONS: These pilot data demonstrate that directing PEMF to refractory feet can provide unexpected short term analgesic effects in more than 50% of individuals. The role of placebo is not known and was not tested. The precise mechanism is unclear yet suggests that severe and advanced cases are more magnetically sensitive. Future studies are needed with randomized placebo-controlled design and longer treatment periods.

Arch Phys Med Rehabil. 2003 May;84(5):736-46.

Static magnetic field therapy for symptomatic diabetic neuropathy: a randomized double-blind, placebo-controlled trial.

Weintraub MI, Wolfe GI, Barohn RA, Cole SP, Parry GJ, Hayat G, Cohen JA, Page JC, Bromberg MB, Schwartz SL; Magnetic Research Group.

Department of Neurology, New York Medical College, Valhalla, NY, USA. miwneuro@pol.net

OBJECTIVE: To determine if constant wearing of multipolar, static magnetic (450G) shoe insoles can reduce neuropathic pain and quality of life (QOL) scores in symptomatic diabetic peripheral neuropathy (DPN).

DESIGN: Randomized, placebo-control, parallel study.

SETTING: Forty-eight centers in 27 states.

PARTICIPANTS: Three hundred seventy-five subjects with DPN stage II or III were randomly assigned to wear constantly magnetized insoles for 4 months; the placebo group wore similar, unmagnetized device.

INTERVENTION: Nerve conduction and/or quantified sensory testing were performed serially.

MAIN OUTCOME MEASURES: Daily visual analog scale scores for numbness or tingling and burning and QOL issues were tabulated over 4 months. Secondary measures included nerve conduction changes, role of placebo, and safety issues. Analysis of variance (ANOVA), analysis of covariance (ANCOVA), and chi-square analysis were performed.

RESULTS: There were statistically significant reductions during the third and fourth months in burning (mean change for magnet treatment, -12%; for sham, -3%; P<.05, ANCOVA), numbness and tingling (magnet, -10%; sham, +1%; P<.05, ANCOVA), and exercise-induced foot pain (magnet, -12%; sham, -4%; P<.05, ANCOVA). For a subset of patients with baseline severe pain, statistically significant reductions occurred from baseline through the fourth month in numbness and tingling (magnet, -32%; sham, -14%; P<.01, ANOVA) and foot pain (magnet, -41%; sham, -21%; P<.01, ANOVA).

CONCLUSIONS: Static magnetic fields can penetrate up to 20mm and appear to target the ectopic firing nociceptors in the epidermis and dermis. Analgesic benefits were achieved over time.

Neurosci Behav Physiol. 2003 Oct;33(8):745-52.

The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy.

Musaev AV, Guseinova SG, Imamverdieva SS.

Science Research Institute of Medical Rehabilitation, Baku, Azerbaidzhan.

Clinical and electroneuromyographic studies were performed in 121 patients with diabetic polyneuropathy (DPN) before and after courses of treatment with pulsed electromagnetic fields with complex modulation (PEMF-CM) at different frequencies (100 and 10 Hz). Testing of patients using the TSS and NIS LL scales demonstrated a correlation between the severity and frequency of the main subjective and objective effects of disease and the stage of DPN. The severity of changes in the segmental-peripheral neuromotor apparatus–decreases in muscle bioelectrical activity, the impulse conduction rate along efferent fibers of peripheral nerves, and the amplitude of the maximum M response–depended on the stage of DPN and the duration of diabetes mellitus. The earliest and most significant electroneuromyographic signs of DPN were found to be decreases in the amplitude of the H reflex and the Hmax/Mmax ratio in the muscles of the lower leg. Application of PEMF-CM facilitated regression of the main clinical symptoms of DPN, improved the conductive function of peripheral nerves, improved the state of la afferents, and improved the reflex excitability of functionally diverse motoneurons in the spinal cord. PEMF-CM at 10 Hz was found to have therapeutic efficacy, especially in the initial stages of DPN and in patients with diabetes mellitus for up to 10 years.

Vopr Kurortol Fizioter Lech Fiz Kult. 1993 Sep-Oct;(5):38-41.

The use of combined methods of magnetoelectrotherapy in treating polyneuropathies.

[Article in Russian]

A comparative evaluation by such parameters as alleviation of pain syndrome, improvement of peripheral resistance and vegetotrophic processes, a decline in pareses and sensory disorders has been performed in 3 groups of patients: group 1 underwent benzohexonium electrophoresis, group 2 benzohexonium electrophoresis in the magnetic field produced by the unit “Polyus-I” followed by low-frequency electrotherapy with bipolar impulse current, group 3 benzohexonium electrophoresis in the magnetic field from the unit “ADMT-Magnipuls” followed by low-frequency electrotherapy with bipolar impulse current. The best clinical and physiological results were reported in group 3 patients.

Wiad Lek. 2003;56(9-10):434-41.

Application of variable magnetic fields in medicine–15 years experience.

[Article in Polish]

Sieron A, Cieslar G.

Katedra i Klinika Chorob Wewnetrznych, Angiologii i Medycyny Fizykalnej SAM, ul. Batorego 15, 41-902 Bytom. sieron@mediclub.pl

The results of 15-year own experimental and clinical research on application of variable magnetic fields in medicine were presented. In experimental studies analgesic effect (related to endogenous opioid system and nitrogen oxide activity) and regenerative effect of variable magnetic fields with therapeutical parameters was observed. The influence of this fields on enzymatic and hormonal activity, free oxygen radicals, carbohydrates, protein and lipid metabolism, dielectric and rheological properties of blood as well as behavioural reactions and activity of central dopamine receptor in experimental animals was proved. In clinical studies high therapeutic efficacy of magnetotherapy and magnetostimulation in the treatment of osteoarthrosis, abnormal ossification, osteoporosis, nasosinusitis, multiple sclerosis, Parkinson’s disease, spastic paresis, diabetic polyneuropathy and retinopathy, vegetative neurosis, peptic ulcers, colon irritable and trophic ulcers was confirmed.

Klin Med (Mosk). 1996;74(5):39-41.

Magentotherapy in the comprehensive treatment of vascular complications of diabetes mellitus.

[Article in Russian]

Kirillov IB, Suchkova ZV, Lastushkin AV, Sigaev AA, Nekhaeva TI.

320 diabetes mellitus (DM) patients were exposed to impulsed magnetic field, 100 control DM patients received conservative therapy alone. 270 patients had microangiopathy, macroangiopathy was diagnosed in 50 patients. Good and satisfactory results of magnetotherapy in combination with conservative methods were achieved in 74% of patients versus 28% in control group. Metabolism stabilization resulted in some patients in reduced blood sugar. Use of magnetic field produced faster and longer response than conservative therapy.

Vestn Oftalmol. 1990 Sep-Oct;106(5):54-7.

Effectiveness of magnetotherapy in optic nerve atrophy.  A preliminary study.

[Article in Russian]

Zobina LV, Orlovskaia LS, Sokov SL, Sabaeva GF, Konde LA, Iakovlev AA.

Magnetotherapy effects on visual functions (vision acuity and field), on retinal bioelectric activity, on conductive vision system, and on intraocular circulation were studied in 88 patients (160 eyes) with optic nerve atrophy. A Soviet Polyus-1 low-frequency magnetotherapy apparatus was employed with magnetic induction of about 10 mT, exposure 7-10 min, 10-15 sessions per course. Vision acuity of patients with its low (below 0.04 diopters) values improved in 50 percent of cases. The number of patients with vision acuity of 0.2 diopters has increased from 46 before treatment to 75. Magnetotherapy improved ocular hemodynamics in patients with optic nerve atrophy, it reduced the time of stimulation conduction along the vision routes and stimulated the retinal ganglia cells. The maximal effect was achieved after 10 magnetotherapy sessions. A repeated course carried out in 6-8 months promoted a stabilization of the process.

Int J Neurosci. 1998 Apr;93(3-4):239-50.

Treatment with AC pulsed electromagnetic fields normalizes the latency of the visual evoked response in a multiple sclerosis patient with optic atrophy.

Sandyk R.

Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY 11746, USA.

Visual evoked response (VER) studies have been utilized as supportive information for the diagnosis of multiple sclerosis (MS) and may be useful in objectively monitoring the effects of various therapeutic modalities. Delayed latency of the VER, which reflects slowed impulse transmission in the optic pathways, is the most characteristic abnormality associated with the disease. Brief transcranial applications of AC pulsed electromagnetic fields (EMFs) in the picotesla flux density are efficacious in the symptomatic treatment of MS and may also reestablish impulse transmission in the optic pathways. A 36 year old man developed an attack of right sided optic neuritis at the age of 30. On presentation he had blurring of vision with reduced acuity on the right and fundoscopic examination revealed pallor of the optic disc. A checkerboard pattern reversal VER showed a delayed latency to right eye stimulation (P100 = 132 ms; normal range: 95-115 ms). After he received two successive applications of AC pulsed EMFs of 7.5 picotesla flux density each of 20 minutes duration administered transcranially, there was a dramatic improvement in vision and the VER latency reverted to normal (P100= 107 ms). The rapid improvement in vision coupled with the normalization of the VER latency despite the presence of optic atrophy, which reflects chronic demyelination of the optic nerve, cannot be explained on the basis of partial or full reformation of myelin. It is proposed that in MS synaptic neurotransmitter deficiency is associated with the visual impairment and delayed VER latency following optic neuritis and that the recovery of the VER latency by treatment with pulsed EMFs is related to enhancement of synaptic neurotransmitter functions in the retina and central optic pathways. Recovery of the VER latency in MS patients may have important implications with respect to the treatment of visual impairment and prevention of visual loss. Specifically, repeated pulsed applications of EMFs may maintain impulse transmission in the optic nerve and thus potentially sustain its viability.

Altern Ther Health Med. 2003 Jul-Aug;9(4):38-48.

Effects of a pulsed electromagnetic therapy on multiple sclerosis fatigue and quality of life: a double-blind, placebo-controlled trial.

Lappin MS, Lawrie FW, Richards TL, Kramer ED.

Energy Medicine Developments, (North America), Inc., Burke, Va., USA.

CONTEXT: There is a growing literature on the biological and clinical effects of pulsed electromagnetic fields. Some studies suggest that electromagnetic therapies may be useful in the treatment of chronic illnesses. This study is a follow-up to a placebo controlled pilot study in which multiple sclerosis (MS) patients exposed to weak, extremely low frequency pulsed electromagnetic fields showed significant improvements on a composite symptom measure.

OBJECTIVE: To evaluate the effects of a pulsed electromagnetic therapy on MS related fatigue, spasticity, bladder control, and overall quality of life.

DESIGN: A multi-site, double-blind, placebo controlled, crossover trial. Each subject received 4 weeks of the active and placebo treatments separated by a 2-week washout period. SETTING: The University of Washington Medical Center in Seattle Wash, the Neurology Center of Fairfax in Fairfax, Va, and the headquarters of the Multiple Sclerosis Association of America in Cherry Hill, NJ.

SUBJECTS: 117 patients with clinically definite MS.

INTERVENTION: Daily exposure to a small, portable pulsing electromagnetic field generator.

MAIN OUTCOME: The MS Quality of Life Inventory (MSQLI) was used to assess changes in fatigue, bladder control, spasticity, and a quality of life composite.

RESULTS: Paired t-tests were used to assess treatment differences in the 117 subjects (81% of the initial sample) who completed both treatment sessions. Improvements in fatigue and overall quality of life were significantly greater on the active device. There were no treatment effects for bladder control and a disability composite, and mixed results for spasticity.

CONCLUSIONS: Evidence from this randomized, double-bind, placebo controlled trial is consistent with results from smaller studies suggesting that exposure to pulsing, weak electromagnetic fields can alleviate symptoms of MS. The clinical effects were small, however, and need to be replicated. Additional research is also needed to examine the possibility that ambulatory patients and patients taking interferons for their MS may be most responsive to this kind of treatment.

Phys Med Rehabil Clin N Am. 1998 Aug;9(3):659-74.

Bioelectromagnetic applications for multiple sclerosis.

Richards TL, Lappin MS, Lawrie FW, Stegbauer KC.

Department of Radiology, University of Washington, Seattle, USA.

There are EM effects on biology that are potentially both harmful and beneficial. We have reviewed applications of EM fields that are relevant to MS. It is possible that EM fields could be developed into a reproducible therapy for both symptom management and long-term care for MS. The long-term care for MS would have to include beneficial changes in the immune system and in nerve regeneration.

Mult Scler. 2005 Jun;11(3):302-5.

Effect of pulsed magnetic field therapy on the level of fatigue in patients with multiple sclerosis–a randomized controlled trial.

Mostert S, Kesselring J.

Department of Neurology, Rehabilitation Centre, CH 7317 Valens, Switzerland.

Twenty-five multiple sclerosis patients, taking part in a rehabilitation program, were randomly assigned to treatment with pulsed magnetic field therapy (PMFT) or to sham therapy in order to study the additional effect of PMFT as part of a multimodal neurological rehabilitation program on fatigue. Patients demographic and disease specific characteristics were recorded. Level of fatigue was measured by fatigue severity scale (FSS) at entrance and discharge and with a visual analog scale (VAS) immediate before and after a single treatment session. The ‘Magnetic Cell Regeneration’ system by Santerra was used for PMFT. A single treatment lasted 16 minutes twice daily over 3-4 weeks and consisted of relaxed lying on a PMF mattress. Sham intervention was conducted in an identical manner with the PMF-device off. Patients and statistics were blinded. Level of fatigue measured by FSS was high at entrance in both treatment group (TG) and control group (CG) (5.6 versus 5.5). Over time of rehabilitation fatigue was reduced by 18% in TG and 7% in CG which was statistically not significant. There was a statistically significant immediate effect of the single treatment session which 18% reduction of fatigue measured by VAS in TG versus 11% in CG. Because of a high ‘placebo effect’ of simple bed rest, a only small and short lasting additional effect of PMFT and high costs of a PMF-device, we cannot recommend PMFT as an additional feature of a multimodal neurological rehabilitation program in order to reduce fatigue level of MS-patients.

Int J Neurosci. 1997 Nov;92(1-2):95-102.

Treatment with electromagnetic fields improves dual-task performance (talking while walking) in multiple sclerosis.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

Multiple sclerosis (MS) is associated with an increased risk of falling resulting from visual disturbances, difficulties with gait and balance, apraxia of gait and peripheral neuropathy. These factors often interact synergistically to compromise the patient’s gait stability. It has long been recognized that walking involves a cognitive component and that simultaneous cognitive and motor operations (dual-task) such as talking while walking may interfere with normal ambulation. Talking while walking reflects an example of a dual-task which is frequently impaired in MS patients. Impaired dual-task performance during walking may compromise the patient’s gait and explain why in some circumstances, MS patients unexpectedly lose their balance and fall. Frontal lobe dysfunction, which commonly occurs in MS patients, may disrupt dual-task performance and increase the risk of falling in these patients. This report concerns a 36 old man with remitting-progressive MS with an EDSS score of 5.5 who experienced marked increase in spasticity in the legs and trunk and worsening of his gait and balance, occasionally resulting in falling, when talking while walking. His gait and balance improved dramatically after he received two successive transcranial treatments, each of 45 minutes, with AC pulsed electromagnetic fields (EMFs) of 7.5 picotesla flux density. Simultaneously, there was improvement in dual-task performance to the extent that talking while walking did not adversely affect his ambulation. In addition, neuropsychological testing revealed an almost 5-fold increase in word output on the Thurstone’s Word-Fluency Test, which is sensitive to frontal lobe dysfunction. It is suggested that facilitation of dual-task performance during ambulation contributes to the overall improvement of gait and balance observed in MS patients receiving transcranial treatment with AC pulsed EMFs.

Int J Neurosci. 1997 Aug;90(3-4):177-85.

Treatment with electromagnetic fields reverses the long-term clinical course of a patient with chronic progressive multiple sclerosis.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

It is estimated that 10-20% of patients with multiple sclerosis (MS) have a chronic progressive (CP) course characterized by an insidious onset of neurological deficits followed by steady progression of disability in the absence of symptomatic remission. To date no therapeutic modality has proven effective in reversing the clinical course of CP MS although there are indications that prolonged treatment with picotesla electromagnetic fields (EMFs) alters the clinical course of patients with CP MS. A 40 year-old woman presented in December of 1992 with CP MS with symptoms of spastic paraplegia, loss of trunk control, marked weakness of the upper limbs with loss of fine and gross motor hand functions, severe fatigue, cognitive deficits, mental depression, and autonomic dysfunction with neurogenic bladder and bowel incontinence. Her symptoms began at the age of 18 with weakness of the right leg and fatigue with long distance walking and over the ensuing years she experienced steady deterioration of functions. In 1985 she became wheelchair dependent and it was anticipated that within 1-2 years she would become functionally quadriplegic. In December of 1992 she began experimental treatment with EMFs. While receiving regularly weekly transcortical treatments with AC pulsed EMFs in the picotesla range intensity she experienced during the first year improvement in mental functions, return of strength in the upper extremities, and recovery of trunk control. During the second year she experienced the return of more hip functions and recovery of motor functions began in her legs. For the first time in years she can now initiate dorsiflexion of her ankles and actively extend her knees voluntarily. Over the past year she started to show signs of redevelopment of reciprocal gait. Presently, with enough function restored in her legs, she is learning to walk with a walker and is able to stand unassisted and maintain her balance for a few minutes. She also regained about 80% of functions in the upper limbs and hands. Most remarkably, there was no further progression of the disease during the 4 years course of magnetic therapy. This patient’s clinical recovery cannot be explained on the basis of a spontaneous remission. It is suggested that pulsed applications of picotesla EMFs affect the neurobiological and immunological mechanisms underlying the pathogenesis of CP MS.

Int J Neurosci. 1997 Aug;90(3-4):145-57.

Resolution of sleep paralysis by weak electromagnetic fields in a patient with multiple sclerosis.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

Sleep paralysis refers to episodes of inability to move during the onset of sleep or more commonly upon awakening. Patients often describe the sensation of struggling to move and may experience simultaneous frightening vivid hallucinations and dreams. Sleep paralysis and other manifestations of dissociated states of wakefulness and sleep, which reflect deficient monoaminergic regulation of neural modulators of REM sleep, have been reported in patients with multiple sclerosis (MS). A 40 year old woman with remitting-progressive multiple sclerosis (MS) experienced episodes of sleep paralysis since the age of 16, four years prior to the onset of her neurological symptoms. Episodes of sleep paralysis, which manifested at a frequency of about once a week, occurred only upon awakening in the morning and were considered by the patient as a most terrifying experience. Periods of mental stress, sleep deprivation, physical fatigue and exacerbation of MS symptoms appeared to enhance the occurrence of sleep paralysis. In July of 1992 the patient began experimental treatment with AC pulsed applications of picotesla intensity electromagnetic fields (EMFs) of 5Hz frequency which were applied extracerebrally 1-2 times per week. During the course of treatment with EMFs the patient made a dramatic recovery of symptoms with improvement in vision, mobility, balance, bladder control, fatigue and short term memory. In addition, her baseline pattern reversal visual evoked potential studies, which showed abnormally prolonged latencies in both eyes, normalized 3 weeks after the initiation of magnetic therapy and remained normal more than 2.5 years later. Since the introduction of magnetic therapy episodes of sleep paralysis gradually diminished and abated completely over the past 3 years. This report suggests that MS may be associated with deficient REM sleep inhibitory neural mechanisms leading to sleep paralysis secondary to the intrusion of REM sleep atonia and dream imagery into the waking state. Pineal melatonin and monoaminergic neurons have been implicated in the induction and maintenance of REM sleep and the pathogenesis of sleep paralysis and it is suggested that resolution of sleep paralysis in this patient by AC pulsed applications of EMFs was related to enhancement of melatonin circadian rhythms and cerebral serotoninergic neurotransmission.

Int J Neurosci. 1997 Jun;90(1-2):59-74.

Immediate recovery of cognitive functions and resolution of fatigue by treatment with weak electromagnetic fields in a patient with multiple sclerosis.

Sandyk R.

Department of Neuroscience, Institute for Biomedical Engineering, Dix Hills, NY, USA.

Cognitive deficits are common among patients with multiple sclerosis (MS). The pathogenetic mechanisms underlying the cognitive impairment in MS are unknown and there is presently no effective therapeutic modality which has shown efficacy in improving cognitive deficits in MS. A 53 year old college professor with a long history of secondary progressive MS experienced, over the preceding year, noticeable deterioration in cognitive functions with difficulties in short and long term memory, word finding in spontaneous speech, attention and concentration span. Unable to pursue his academic activities, he was considering early retirement. Mental examination disclosed features of subcortical and cortical dementia involving frontal lobe, left hemispheric and right hemispheric dysfunction. Almost immediately following the extracerebral application of AC pulsed electromagnetic fields (EMFs) of 7.5 picotesla intensity and a 4-Hz sinusoidal wave, the patient experienced a heightend sense of well being, which he defined as enhancement of cognitive functions with a feeling “like a cloud lifted off my head.” He reported heightend clarity of thinking and during the application of EMFs he felt that words were formed faster and he experienced no difficulty finding the appropriate words. His speech was stronger and well modulated and he felt “energized” with resolution of his fatigue. There was improvement in manual dexterity and handwriting and testing of constructional praxis demonstrated improvement in visuospatial, visuoperceptive and visuomotor functions. It is suggested that some of the cognitive deficits associated with MS, which are caused by synaptic disruption of neurotransmitter functions, may be reversed through pulsed applications of picotesla range EMFs.

Int J Neurosci. 1996 Oct;87(1-2):5-15.

Suicidal behavior is attenuated in patients with multiple sclerosis by treatment with electromagnetic fields.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

A marked decrease in the levels of serotonin (5-HT) and its metabolite (5-HIAA) has been demonstrated in postmortem studies of suicide victims with various psychiatric disorders. Depression is the most common mental manifestation of multiple sclerosis (MS) which accounts for the high incidence of suicide in this disease. CSF 5-HIAA concentrations are reduced in MS patients and nocturnal plasma melatonin levels were found to be lower in suicidal than in nonsuicidal patients. These findings suggest that the increased risk of suicide in MS patients may be related to decreased 5-HT functions and blunted circadian melatonin secretion. Previous studies have demonstrated that extracerebral applications of pulsed electromagnetic fields (EMFs) in the picotesla range rapidly improved motor, sensory, affective and cognitive deficits in MS. Augmentation of cerebral 5-HT synthesis and resynchronization of circadian melatonin secretion has been suggested as a key mechanism by which these EMFs improved symptoms of the disease. Therefore, the prediction was made that this treatment modality would result in attenuation of suicidal behavior in MS patients. The present report concerns three women with remitting-progressive MS who exhibited suicidal behavior during the course of their illness. All patients had frequent suicidal thoughts over several years and experienced resolution of suicidal behavior within several weeks after introduction of EMFs treatment with no recurrence of symptoms during a follow-up of months to 3.5 years. These findings demonstrate that in MS pulsed applications of picotesla level EMFs improve mental depression and may reduce the risk of suicide by a mechanism involving the augmentation of 5-HT neurotransmission and resynchronization of circadian melatonin secretion.

Int J Neurosci. 1996 Jul;86(1-2):79-85.

Effect of weak electromagnetic fields on body image perception in patients with multiple sclerosis.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

Cerebellar ataxia is one of the most disabling symptoms of multiple sclerosis (MS) and also one of the least responsive to pharmacotherapy. However, cerebellar symptoms often improve dramatically in MS patients by brief, extracerebral applications of picotesla flux electromagnetic fields (EMFs). This report concerns two MS patients with chronic disabling ataxia who experienced rapid improvement in gait and balance after receiving a series of treatments with EMFs. To assess whether improvement in cerebellar gait is accompanied by changes in body image perception, a parietal lobe function, both patients were administered the Human Figure Drawing Test before and after a series of brief treatments with EMFs. Prior to application of EMFs these patients’ free drawings of a person showed a figure with a wide-based stance characteristic of cerebellar ataxia. After receiving a series of EMFs treatments both patients demonstrated a change in body image perception with the drawings of the human figure showing a normal stance. These findings demonstrate that in MS improvement in cerebellar symptoms by pulsed applications of picotesla EMFs is associated with changes in the body image.

Int J Neurosci. 1996 Jul;86(1-2):67-77.

Treatment with weak electromagnetic fields attenuates carbohydrate cravings in a patients with multiple sclerosis.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

Pharmacological studies have implicated serotonergic (5-HT) neurons in the regulation of food intake and food preference. It has been shown that the urge to consume carbohydrate rich foods is regulated by 5-HT activity and that carbohydrate craving is triggered by 5-HT deficiency in the medical hypothalamus. Ingestion of carbohydrate foods stimulates insulin secretion which accelerates the uptake of tryptophan, the precursor of 5-HT and melatonin, into the brain and pineal gland, respectively. Thus, carbohydrate craving might be considered a form of “self medication” aimed at correcting an underlying dysfunction of cerebral 5-HT and pineal melatonin functions. A 51 year old woman with remitting-progressive MS experienced carbohydrate craving during childhood and adolescence and again in temporal association with the onset of her first neurological symptoms at the age of 45. Carbohydrate craving, which resembled the pattern observed in patients with seasonal affective disorder (SAD), was attenuated by a series of extracranial AC pulsed applications of picotesla (10(-12) Tesla) flux intensity electromagnetic fields (EMFs). It is suggested that AC pulsed EMFs applications activated retinal mechanisms which, through functional interactions with the medial hypothalamus, initiated an increased release of 5-HT and resynchronization of melatonin secretion ultimately leading to a decrease in carbohydrate craving. The occurrence of carbohydrate craving in early life may have increased the patient’s vulnerability to viral infection given the importance of 5-HT and melatonin in immunomodulation and the regulation of the integrity of the blood brain barrier. The recurrence of this craving in temporal relation to the onset of neurological symptoms suggests that 5-HT deficiency and impaired pineal melatonin functions are linked to the timing of onset of the clinical symptoms of the disease. The report supports the role of experimental factors in the pathophysiology of MS.

Int J Neurosci. 1995 Nov;83(1-2):81-92.

Resolution of dysarthria in multiple sclerosis by treatment with weak electromagnetic fields.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

It has been reported that 50% or more of patients diagnosed with multiple sclerosis (MS) exhibit speech impairment (dysarthria) which in some cases can be exceedingly disabling. Currently there is no effective medical treatment for the dysarthria of MS which occurs as a result of lesions to the cerebellum and its outflow tracts. It was reported recently that extracranial application of brief AC pulsed electromagnetic fields (EMFs) in the picotesla (pT) range intensity produced in patients with MS sustained improvement in motor functions including cerebellar symptomatology. This communication concerns two MS patients with a chronic progressive course who exhibited severe dysarthria which improved already during the initial treatment with pulsed EMFs and which resolved completely 3-4 weeks later. Since application of EMFs has been shown to alter: (a) the resting membrane potential and synaptic neurotransmitter release through an effect involving changes in transmembrane calcium flux; and (b) the secretion of pineal melatonin which in turn influences the synthesis and release of serotonin (5-HT) and gamma-amino butyric acid (GABA) in the cerebellum, it is suggested that the immediate improvement of the dysarthria occurred as a result of changes in cerebellar neurotransmitter functions particularly 5-HT and GABA rather than from remyelination.

Int J Neurosci. 1995 Jun;82(3-4):223-42.

Chronic relapsing multiple sclerosis: a case of rapid recovery by application of weak electromagnetic fields.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

A 54 year-old woman was diagnosed with multiple sclerosis (MS) in 1985 at the age of 45 after she developed diplopia, slurred speech, and weakness in the right leg. A Magnetic Resonance Imaging (MRI) scan obtained in 1985 showed several areas of plaque formation distributed in the periventricular white matter and centrum semiovale bilaterally. Coincident with slow deterioration in her condition since 1990 a second MRI scan was obtained in 1991 which showed a considerable increase in the number and size of plaques throughout both cerebral hemispheres, subcortical white matter, periventricularly and brainstem. In 1994, the patient received treatment with Interferon beta- 1b (Betaseron) for 6 months with no improvement in symptoms. However, following two successive extracranial applications of pulsed electromagnetic fields (EMFs) in the picotesla (pT) range each of 20 minutes duration the patient experienced an immediate improvement in symptoms most dramatically in gait, balance, speech, level of energy, swallowing, mood, and vision. On a maintenance program of 3 treatments per month the patient’s only symptom is mild right foot and leg weakness. The report points to the unique efficacy of externally applied pT range EMFs in the symptomatic treatment of MS, indicates a lack of an association between the extent of demyelinating plaques on MRI scan and rate and extent of recovery in response to EMFs, and supports the notion that dysfunction of synaptic conductivity due to neurotransmitter deficiency particularly of serotonin (5-HT) contributes more significantly to the development of MS symptoms than the process of demyelination which clinically seems to represent an epiphenomenon of the disease.

Int J Neurosci. 1994 Dec;79(3-4):199-212.

Weak electromagnetic fields attenuate tremor in multiple sclerosis.

Sandyk R, Dann LC.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

It has been estimated that about 75% of patients diagnosed with multiple sclerosis (MS) have tremor which can be exceedingly disabling. The most common tremor observed in patients with MS is a cerebellar intention tremor (‘kinetic tremor’) although postural tremor (‘static tremor’) is also common and often extremely incapacitating. Currently there is no effective medical treatment for the tremor of MS which, in some severe cases, may be abolished by stereotactic thalamotomy. It was reported recently that extracranial application of brief AC pulsed electromagnetic fields (EMFs) in the picotesla (pT) range produced improvement in motor and cognitive functions in patients with MS. The present communication concerns three MS patients with a chronic progressive course of the disease (mean age: 39.3 +/- 8.3 years; mean duration of illness: 11.3 +/- 3.2 years) in whom brief external applications of pulsed EMFs of 7.5 pT intensity reduced intention and postural tremors resulting in significant functional improvement. The report suggests that these extremely low intensity EMFs are beneficial also in the treatment of tremors in MS and that this treatment may serve as an alternative method to stereotactic thalamotomy in the management of tremor in MS. The mechanisms by which EMFs attenuate the tremors of MS are complex and are thought to involve augmentation of GABA and serotonin (5-HT) neurotransmission in the cerebellum and its outflow tracts.

Therapeutic effects of alternating current pulsed electromagnetic fields in multiple sclerosis.

Sandyk R. Dep. of Neuroscience, Institute for Biomedical Engineering and Rehab Services of Touro College, Dix Hills, New York.

Multiple sclerosis is the third most common cause of severe disability in patients between the ages of 15 and 50 years. The cause of the disease and its pathogenesis remain unknown. The last 20 years have seen only meager advances in the development of effective treatments for the disease. No specific treatment modality can cure the disease or alter its long-term course and eventual outcome. Moreover, there are no agents or treatments that will restore premorbid neuronal function. A host of biological phenomena associated with the disease involving interactions among genetic, environmental, immunologic, and hormonal factors, cannot be explained on the basis of demyelination alone and therefore require refocusing attention on alternative explanations, one of which implicates the pineal gland as pivotal. The pineal gland functions as a magnetoreceptor organ. This biological property of the gland provided the impetus for the development of a novel and highly effective therapeutic modality, which involves transcranial applications of alternating current (AC) pulsed electromagnetic fields flux density. This review summarizes recent clinical work on the effects of transcranially applied pulsed electromagnetic fields for the symptomatic treatment of the disease.

J In Biologic Effects of Light 1998 Symposium

Pulsing magnetic field effects on brain electrical activity in multiple sclerosis.

Richards TL, Acosta-Urquidi,

Multiple sclerosis (MS) is a disease of the central nervous system. Clinical symptoms include central fatigue, impaired bladder control, muscle weakness, sensory deficits, impaired cognition, and others. The cause of MS is unknown, but from histologic, immunologic, and radiologic studies, we know that there are demyelinated brain lesions (visible on magnetic resonance images) that contain immune cells such as macrophages and T-cells (visible on microscopic analysis of brain sections). Recently, a histologic study has also shown that widespread axonal damage occurs in MS along with demyelination. What is the possible connection between MS and bio-electromagnetic fields? We recently published a review entitled “Bio-electromagnetic applications for multiple sclerosis,” which examined several scientific studies that demonstrated the effects of electromagnetic fields on nerve regeneration, brain electrical activity (electro-encephalography), neurochemistry, and immune system components. All of these effects are important for disease pathology and clinical symptoms in multiple sclerosis (MS). EEG was measured in this study in order to test our hypothesis that the pulsing magnetic device affects the brain electrical activity, and that this may be a mechanism for the effect we have observed on patient-reported symptoms. The EEG data reported previously were measured only during resting and language conditions. The purpose of the current study was to measure the effect of the electromagnetic device on EEG activity during and after photic stimulation with flashing lights. After photic stimulation, there was a statistically significant increase in alpha EEG magnitude that was greater in the active group compared to the placebo group in electrode positions P3, T5, and O1 (analysis of variance p<.001, F=14, DF = 1,16). In the comparison between active versus placebo, changes measured from three electrode positions were statistically significantly even after multiple comparison correction.

Treatment with weak electromagnetic fiels improves fatigue associated with multiple sclerosis.

Sandyk R. NeuroCommunication Research Laboratories, Danbury, CT, USA

It is estimated that 75-90% of patients with multiple sclerosis (MS) experience fatigue at some point during the course of the disease and that in about half of these patients, subjective fatigue is a primary complaint. In the majority of patients fatigue is present throughout the course of the day being most prominent in the mid to late afternoon. Sleepiness is not prominent, but patients report that rest may attenuate fatigability. The pathophysiology of the fatigue of MS remains unknown. Delayed impulse conduction in demyelinated zones may render transmission in the brainstem reticular formation less effective. In addition, the observation that rest may restore energy and that administration of pemoline and amantadine, which increase the synthesis and release of monoamines, often improve the fatigue of MS suggest that depletion of neurotransmitter stores in damaged neurons may contribute significantly to the development of fatigue in these patients. The present report concerns three MS patients who experienced over several years continuous and debilitating fatigue throughout the course of the day. Fatigue was exacerbated by increased physical activity and was not improved by rest. After receiving a course of treatments with picotesla flux electromagnetic fields (EMFs), which were applied extracranially, all patients experienced improvement in fatigue. Remarkably, patients noted that several months after initiation of treatment with EMFs they were able to recover, after a short period of rest, from fatigue which followed increased physical activity. These observations suggest that replenishment of monoamine stores in neurons damaged by demyelination in the brainstem reticular formation by periodic applications of picotesla flux intensity EMFs may lead to more effective impulse conduction and thus to improvement in fatigue including rapid recovery of fatigue after rest.

Int J Neurosci. 1998 Jul;95(1-2):107-13.

Yawning and stretching–a behavioral syndrome associated with transcranial application of electromagnetic fields in multiple sclerosis.

Sandyk R.

Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY 11746, USA.

Intracerebral administration of adrenocorticotropic hormone (ACTH) elicits in experimental animals a yawning stretching behavior which is believed to reflect an arousal response mediated through the septohippocampal cholinergic neurons. A surge in plasma ACTH levels at night and just prior to awakening from sleep is also associated in humans with yawning and stretching behavior. Recurrent episodes of uncontrollable yawning and body stretching, identical to those observed upon awakening from physiological sleep, occur in a subset of patients with multiple sclerosis (MS) during transcranial therapeutic application of AC pulsed electromagnetic fields of picotesla flux density. This behavioral response has been observed exclusively in young female patients who are fully ambulatory with a relapsing remitting course of the disease who also demonstrate a distinctly favorable therapeutic response to magnetic stimulation. ACTH is employed for the treatment of MS due to its immunomodulatory effects and a surge in its release in response to AC pulsed magnetic stimulation could explain some of the mechanism by which these fields improve symptoms of the disease.

Int J Neurosci. 1997 Jan;89(1-2):39-51.

Progressive cognitive improvement in multiple sclerosis from treatment with electromagnetic fields.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

It has long been recognized that cognitive impairment occurs in patients with multiple sclerosis (MS) particularly among patients with a chronic progressive course. MS is considered a type of “subcortical dementia” in which cognitive and behavioral abnormalities resemble those observed in patients with a frontal lobe syndrome. The Bicycle Drawing Test is employed for the neuropsychological assessment of cognitive impairment specifically that of mechanical reasoning and visuographic functioning. It also provides clues concerning the patient’s organizational skills which are subserved by the frontal lobes. Extracerebral pulsed applications of picotesla flux intensity electromagnetic fields (EMFs) have been shown to improve cognitive functions in patients with MS. I present three patients with long standing symptoms of MS who, on the initial baseline, pretreatment Bicycle Drawing Test, exhibited cognitive impairment manifested by omissions of essential details and deficient organizational skills. All patients demonstrated progressive improvement in their performance during treatment with EMFs lasting from 6-18 months. The improvement in cognitive functions, which occurred during the initial phases of the treatment, was striking for the changes in organizational skills reflecting frontal lobe functions. These findings demonstrate that progressive recovery of cognitive functions in MS patients are observed over time through continued administration of picotesla flux intensity EMFs. It is believed that the beneficial cognitive effects of these EMFs are related to increased synaptic neurotransmission and that the progressive cognitive improvement noted in these patients is associated with slow recovery of synaptic functions in monoaminergic neurons of the frontal lobe or its projections from subcortical areas.

Wiad Lek. 2003;56(9-10):434-41.

Application of variable magnetic fields in medicine–15 years experience.

[Article in Polish]

Sieron A, Cieslar G.

Katedra i Klinika Chorob Wewnetrznych, Angiologii i Medycyny Fizykalnej SAM, ul. Batorego 15, 41-902 Bytom. sieron@mediclub.pl

The results of 15-year own experimental and clinical research on application of variable magnetic fields in medicine were presented. In experimental studies analgesic effect (related to endogenous opioid system and nitrogen oxide activity) and regenerative effect of variable magnetic fields with therapeutical parameters was observed. The influence of this fields on enzymatic and hormonal activity, free oxygen radicals, carbohydrates, protein and lipid metabolism, dielectric and rheological properties of blood as well as behavioural reactions and activity of central dopamine receptor in experimental animals was proved. In clinical studies high therapeutic efficacy of magnetotherapy and magnetostimulation in the treatment of osteoarthrosis, abnormal ossification, osteoporosis, nasosinusitis, multiple sclerosis, Parkinson’s disease, spastic paresis, diabetic polyneuropathy and retinopathy, vegetative neurosis, peptic ulcers, colon irritable and trophic ulcers was confirmed.

Ann Neurol. 2005 Oct 20; [Epub ahead of print]

Altered plasticity of the human motor cortex in Parkinson’s disease.

Ueki Y, Mima T, Ali Kotb M, Sawada H, Saiki H, Ikeda A, Begum T, Reza F, Nagamine T, Fukuyama H.

Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.

Interventional paired associative stimulation (IPAS) to the contralateral peripheral nerve and cerebral cortex can enhance the primary motor cortex (M1) excitability with two synchronously arriving inputs. This study investigated whether dopamine contributed to the associative long-term potentiation-like effect in the M1 in Parkinson’s disease (PD) patients. Eighteen right-handed PD patients and 11 right-handed age-matched healthy volunteers were studied. All patients were studied after 12 hours off medication with levodopa replacement (PD-off). Ten patients were also evaluated after medication (PD-on). The IPAS comprised a single electric stimulus to the right median nerve at the wrist and subsequent transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 milliseconds (240 paired stimuli every 5 seconds for 20 minutes). The motor-evoked potential amplitude in the right abductor pollicis brevis muscle was increased by IPAS in healthy volunteers, but not in PD patients. IPAS did not affect the motor-evoked potential amplitude in the left abductor pollicis brevis. The ratio of the motor-evoked potential amplitude before and after IPAS in PD-off patients increased after dopamine replacement. Thus, dopamine might modulate cortical plasticity in the human M1, which could be related to higher order motor control, including motor learning. Ann Neurol 2006.

Int J Neurosci. 1999 Aug;99(1-4):139-49.

AC pulsed electromagnetic fields-induced sexual arousal and penile erections in Parkinson’s disease.

Sandyk R.

Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services, Touro College, Bay Shore, NY 11706, USA.

Sexual dysfunction is common in patients with Parkinson’s disease (PD) since brain dopaminergic mechanisms are involved in the regulation of sexual behavior. Activation of dopamine D2 receptor sites, with resultant release of oxytocin from the paraventricular nucleus (PVN) of the hypothalamus, induces sexual arousal and erectile responses in experimental animals and humans. In Parkinsonian patients subcutaneous administration of apomorphine, a dopamine D2 receptor agonist, induces sexual arousal and penile erections. It has been suggested that the therapeutic efficacy of transcranial administration of AC pulsed electromagnetic fields (EMFs) in the picotesla flux density in PD involves the activation of dopamine D2 receptor sites which are the principal site of action of dopaminergic pharmacotherapy in PD. Here, 1 report 2 elderly male PD patients who experienced sexual dysfunction which was recalcitrant to treatment with anti Parkinsonian agents including selegiline, levodopa and tolcapone. However, brief transcranial administrations of AC pulsed EMFs in the picotesla flux density induced in these patients sexual arousal and spontaneous nocturnal erections. These findings support the notion that central activation of dopamine D2 receptor sites is associated with the therapeutic efficacy of AC pulsed EMFs in PD. In addition, since the right hemisphere is dominant for sexual activity, partly because of a dopaminergic bias of this hemisphere, these findings suggest that right hemispheric activation in response to administration of AC pulsed EMFs was associated in these patient with improved sexual functions

Int J Neurosci. 1999 Apr;97(3-4):225-33.

Treatment with AC pulsed electromagnetic fields improves olfactory function in Parkinson’s disease.

Sandyk R.

Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY 11746, USA.

Olfactory dysfunction is a common symptom of Parkinson’s disease (PD). It may manifest in the early stages of the disease and infrequently may even antedate the onset of motor symptoms. The cause of olfactory dysfunction in PD remains unknown. Pathological changes characteristic of PD (i.e., Lewy bodies) have been demonstrated in the olfactory bulb which contains a large population of dopaminergic neurons involved in olfactory information processing. Since dopaminergic drugs do not affect olfactory threshold in PD patients, it has been suggested that olfactory dysfunction in these patients is not dependent on dopamine deficiency. I present two fully medicated Parkinsonian patients with long standing history of olfactory dysfunction in whom recovery of smell occurred during therapeutic transcranial application of AC pulsed electromagnetic fields (EMFs) in the picotesla flux density. In both patients improvement of smell during administration of EMFs occurred in conjunction with recurrent episodes of yawning. The temporal association between recovery of smell and yawning behavior is remarkable since yawning is mediated by activation of a subpopulation of striatal and limbic postsynaptic dopamine D2 receptors induced by increased synaptic dopamine release. A high density of dopamine D2 receptors is present in the olfactory bulb and tract. Degeneration of olfactory dopaminergic neurons may lead to upregulation (i.e., supersensitivity) of postsynaptic dopamine D2 receptors. Presumably, small amounts of dopamine released into the synapses of the olfactory bulb during magnetic stimulation may cause activation of these supersensitive receptors resulting in enhanced sense of smell. Interestingly, in both patients enhancement of smell perception occurred only during administration of EMFs of 7 Hz frequency implying that the release of dopamine and activation of dopamine D2 receptors in the olfactory bulb was partly frequency dependent. In fact, weak magnetic fields have been found to cause interaction with biological systems only within narrow frequency ranges (i.e., frequency windows) and the existence of such frequency ranges has been explained on the basis of the cyclotron resonance model.

Int J Neurosci. 1998 Sep;95(3-4):255-69.

Reversal of the bicycle drawing direction in Parkinson’s disease by AC pulsed electromagnetic fields.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

The Draw-a-Bicycle Test is employed in neuropsychological testing of cognitive skills since the bicycle design is widely known and also because of its complex structure. The Draw-a-Bicycle Test has been administered routinely to patients with Parkinson’s disease (PD) and other neurodegenerative disorders to evaluate the effect of transcranial applications of AC pulsed electromagnetic fields (EMFs) in the picotesla flux density on visuoconstructional skills. A seminal observation is reported in 5 medicated PD patients who demonstrated reversal of spontaneous drawing direction of the bicycle after they received a series of transcranial treatments with AC pulsed EMFs. In 3 patients reversal of the bicycle drawing direction was observed shortly after the administration of pulsed EMFs while in 2 patients these changes were observed within a time lag ranging from several weeks to months. All patients also demonstrated a dramatic clinical response to the administration of EMFs. These findings are intriguing because changes in drawing direction do not occur spontaneously in normal individuals as a result of relateralization of cognitive functions. This report suggests that administration of AC pulsed EMFs may induce in some PD patients changes in hemispheric dominance during processing of a visuoconstructional task and that these changes may be predictive of a particularly favourable response to AC pulsed EMFs therapy.

Int J Neurosci. 1998 May;94(1-2):41-54.

Transcranial AC pulsed applications of weak electromagnetic fields reduces freezing and falling in progressive supranuclear palsy: a case report.

Sandyk R.

Department of Neuroscience, Institute for Biomedical Engineering and Rehabilitation Services, Touro College, Dix Hills, NY 11746, USA.

Freezing is a common and disabling symptom in patients with Parkinsonism. It affects most commonly the gait in the form of start hesitation and sudden immobility often resulting in falling. A higher incidence of freezing occurs in patients with progressive supranuclear palsy (PSP) which is characterized clinically by a constellation of symptoms including supranuclear ophthalmoplegia, postural instability, axial rigidity, dysarthria, Parkinsonism, and pseudobulbar palsy. Pharmacologic therapy of PSP is currently disappointing and the disease progresses relentlessly to a fatal outcome within the first decade after onset. This report concerns a 67 year old woman with a diagnosis of PSP in whom freezing and frequent falling were the most disabling symptoms of the disease at the time of presentation. Both symptoms, which were rated 4 on the Unified Parkinson Rating Scale (UPRS) which grades Parkinsonian symptoms and signs from 0 to 4, with 0 being normal and 4 being severe symptoms, were resistant to treatment with dopaminergic drugs such as levodopa, amantadine, selegiline and pergolide mesylate as well as with the potent and highly selective noradrenergic reuptake inhibitor nortriptyline. Weekly transcranial applications of AC pulsed electromagnetic fields (EMFs) of picotesla flux density was associated with approximately 50% reduction in the frequency of freezing and about 80-90% reduction in frequency of falling after a 6 months follow-up period. At this point freezing was rated 2 while falling received a score of 1 on the UPRS. In addition, this treatment was associated with an improvement in Parkinsonian and pseudobulbar symptoms with the difference between the pre-and post EMF treatment across 13 measures being highly significant (p < .005; Sign test). These results suggest that transcranial administration AC pulsed EMFs in the picotesla flux density is efficacious in the treatment of PSP.

J Neurosci. 1998 Feb;93(1-2):43-54.

Reversal of a body image disorder (macrosomatognosia) in Parkinson’s disease by treatment with AC pulsed electromagnetic fields.

Sandyk R.

Department of Neuroscience, Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY 11746, USA.

Macrosomatognosia refers to a disorder of the body image in which the patient perceives a part or parts of his body as disproportionately large. Macrosomatognosia has been associated with lesions in the parietal lobe, particularly the right parietal lobe, which integrates perceptual-sensorimotor functions concerned with the body image. It has been observed most commonly in patients with paroxysmal cerebral disorders such as epilepsy and migraine. The Draw-a-Person-Test has been employed in neuropsychological testing to identify disorders of the body image. Three fully medicated elderly Parkinsonian patients who exhibited, on the Draw-a-Person Test, macrosomatognosia involving the upper limbs are presented. In these patients spontaneous drawing of the figure of a man demonstrated disproportionately large arms. Furthermore, it was observed that the arm affected by tremor or, in the case of bilateral tremor, the arm showing the most severe tremor showed the greatest abnormality. This association implies that dopaminergic mechanisms influence neuronal systems in the nondominant right parietal lobe which construct the body image. After receiving a course of treatments with AC pulsed electromagnetic fields (EMFs) in the picotesla flux density applied transcranially, these patients’ drawings showed reversal of the macrosomatognosia. These findings demonstrate that transcranial applications of AC pulsed EMFs affect the neuronal systems involved in the construction of the human body image and additionally reverse disorders of the body image in Parkinsonism which are related to right parietal lobe dysfunction.

Int J Neurosci. 1997 Nov;92(1-2):63-72.

Speech impairment in Parkinson’s disease is improved by transcranial application of electromagnetic fields.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

A 52 year old fully medicated physician with juvenile onset Parkinsonism experienced 4 years ago severe “on-off” fluctuations in motor disability and debilitating speech impairment with severe stuttering which occurred predominantly during “on-off” periods. His speech impairment improved 20%-30% when sertraline (75 mg/day), a serotonin reuptake inhibitor, was added to his dopaminergic medications which included levodopa, amantadine, selegiline and pergolide mesylate. A more dramatic and consistent improvement in his speech occurred over the past 4 years during which time the patient received, on a fairly regular basis, weekly transcranial treatments with AC pulsed electromagnetic fields (EMFs) of picotesla flux density. Recurrence of speech impairment was observed on several occasions when regular treatments with EMFs were temporarily discontinued. These findings demonstrate that AC pulsed applications of picotesla flux density EMFs may offer a nonpharmacologic approach to the management of speech disturbances in Parkinsonism. Furthermore, this case implicates cerebral serotonergic deficiency in the pathogenesis of Parkinsonian speech impairment which affects more than 50% of patients. It is believed that pulsed applications of EMFs improved this patient’s speech impairment through the facilitation of serotonergic transmission which may have occurred in part through a synergistic interaction with sertraline.

Int J Neurosci. 1997 Oct;91(3-4):189-97.

Treatment with AC pulsed electromagnetic fields improves the response to levodopa in Parkinson’s disease.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

A 52 year old fully medicated Parkinsonian patient with severe disability (stage 4 on the Hoehn & Yahr disability scale) became asymptomatic 10 weeks after he received twice weekly transcranial treatments with AC pulsed electromagnetic fields (EMFs) of picotesla flux density. Prior to treatment with EMFs, his medication (Sinemet CR) was about 50% effective and he experienced end-of-dose deterioration and diurnal-related decline in the drug’s efficacy. For instance, while his morning medication was 90% effective, his afternoon medication was only 50% effective and his evening dose was only 30% effective. Ten weeks after introduction of treatment with EMFs, there was 40% improvement in his response to standard Sinemet medication with minimal change in its efficacy during the course of the day or evening. These findings demonstrate that intermittent, AC pulsed applications of picotesla flux density EMFs improve Parkinsonian symptoms in part by enhancing the patient’s response to levodopa. This effect may be related to an increase in the capacity of striatal DA neurons to synthesize, store and release DA derived from exogenously supplied levodopa as well as to increased serotonin (5-HT) transmission which has been shown to enhance the response of PD patients to levodopa. Since decline in the response to levodopa is a phenomenon associated with progression of the disease, this case suggests that intermittent applications of AC pulsed EMFs of picotesla flux density reverse the course of chronic progressive PD.

Int J Neurosci. 1997 Sep;91(1-2):57-68.

Reversal of cognitive impairment in an elderly parkinsonian patient by transcranial application of picotesla electromagnetic fields.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

A 74 year old retired building inspector with a 15 year history of Parkinson’s disease (PD) presented with severe resting tremor in the right hand, generalized bradykinesia, difficulties with the initiation of gait with freezing, mental depression and generalized cognitive impairment despite being fully medicated. Testing of constructional abilities employing various drawing tasks demonstrated drawing impairment compatible with severe left hemispheric dysfunction. After receiving two successive transcranial applications, each of 20 minutes duration, with AC pulsed electromagnetic fields (EMFs) of 7.5 picotesla flux density and frequencies of 5Hz and 7Hz respectively, his tremor remitted and there was dramatic improvement in his drawing performance. Additional striking improvements in his drawing performance occurred over the following two days after he continued to receive daily treatments with EMFs. The patient’s drawings were subjected to a Reliability Test in which 10 raters reported 100% correct assessment of pre- and post drawings with all possible comparisons (mean 2 = 5.0; p < .05). This case demonstrates in PD rapid reversal of drawing impairment related to left hemispheric dysfunction by brief transcranial applications of AC pulsed picotesla flux density EMFs and suggests that cognitive deficits associated with Parkinsonism, which usually are progressive and unaffected by dopamine replacement therapy, may be partly reversed by administration of these EMFs. Treatment with picotesla EMFs reflects a “cutting edge” approach to the management of cognitive impairment in Parkinsonism.

Int J Neurosci. 1997 Jun;90(1-2):75-86.

Treatment with weak electromagnetic fields restores dream recall in a parkinsonian patient.

Sandyk R.

Department of Neuroscience, Institute for Biomedical Engineering and Rehabilitation Services, Touro College, Dix Hills, NY 11746, USA.

Absent or markedly reduced REM sleep with cessation of dream recall has been documented in numerous neurological disorders associated with subcortical dementia including Parkinson’s disease, progressive supranuclear palsy and Huntington’s chorea. This report concerns a 69 year old Parkinsonian patient who experienced complete cessation of dreaming since the onset of motor disability 13 years ago. Long term treatment with levodopa and dopamine (DA) receptor agonists (bromocriptine and pergolide mesylate) did not affect dream recall. However, dreaming was restored after the patient received three treatment sessions with AC pulsed picotesla range electromagnetic fields (EMFs) applied extracranially over three successive days. Six months later, during which time the patient received 3 additional treatment sessions with EMFs, he reported dreaming vividly with intense colored visual imagery almost every night with some of the dreams having sexual content. In addition, he began to experience hypnagogic imagery prior to the onset of sleep. Cessation of dream recall has been associated with right hemispheric dysfunction and its restoration by treatment with EMFs points to right hemispheric activation, which is supported by improvement in this patient’s visual memory known to be subserved by the right temporal lobe. Moreover, since DA neurons activate REM sleep mechanisms and facilitate dream recall, it appears that application of EMFs enhanced DA activity in the mesolimbic system which has been implicated in dream recall. Also, since administration of pineal melatonin has been reported to induce vivid dreams with intense colored visual imagery in normal subjects and narcoleptic patients, it is suggested that enhanced nocturnal melatonin secretion was associated with restoration of dream recall in this patient. These findings demonstrate that unlike chronic levodopa therapy, intermittent pulsed applications of AC picotesla EMFs may induce in Parkinsonism reactivation of reticular-limbic-pineal systems involved in the generation of dreaming.

Int J Neurosci. 1996 Nov;87(3-4):209-17.

Brief communication: electromagnetic fields improve visuospatial performance and reverse agraphia in a parkinsonian patient.

Sandyk R.

Department of Neuroscience, Touro College, Dix Hills, NY 11746, USA.

A 73 year old right-handed man, diagnosed with Parkinson’s disease (PD) in 1982, presented with chief complaints of disabling resting and postural tremors in the right hand, generalized bradykinesia and rigidity, difficulties with the initiation of gait, freezing of gait, and mild dementia despite being fully medicated. On neuropsychological testing the Bicycle Drawing Test showed cognitive impairment compatible with bitemporal and frontal lobe dysfunction and on attempts to sign his name he exhibited agraphia. After receiving two successive treatments, each of 20 minutes duration, with AC pulsed electromagnetic fields (EMFs) of 7.5 picotesla intensity and 5 Hz frequency sinusoidal wave, his drawing to command showed improvement in visuospatial performance and his signature became legible. One week later, after receiving two additional successive treatments with these EMFs each of 20 minutes duration with a 7 Hz frequency sinusoidal wave, he drew a much larger, detailed and visuospatially organized bicycle and his signature had normalized. Simultaneously, there was marked improvement in Parkinsonian motor symptoms with almost complete resolution of the tremors, start hesitation and freezing of gait. This case demonstrates the dramatic beneficial effects of AC pulsed picotesla EMFs on neurocognitive processes subserved by the temporal and frontal lobes in Parkinsonism and suggest that the dementia of Parkinsonism may be partly reversible.

Int J Neurosci. 1996 Mar;85(1-2):111-24.

Freezing of gait in Parkinson’s disease is improved by treatment with weak electromagnetic fields.

Sandyk R.

NeuroCommunication Research Laboratories, Danbury, CT 06811, USA.

Freezing, a symptom characterized by difficulty in the initiation and smooth pursuit of repetitive movements, is a unique and well known clinical feature of Parkinson’s disease (PD). It usually occurs in patients with long duration and advanced stage of the disease and is a major cause of disability often resulting in falling. In PD patients freezing manifests most commonly as a sudden attack of immobility usually experienced during walking, attempts to turn while walking, or while approaching a destination. Less commonly it is expressed as arrest of speech or handwriting. The pathophysiology of Parkinsonian freezing, which is considered a distinct clinical feature independent of akinesia, is poorly understood and is believed to involve abnormalities in dopamine and norepinephrine neurotransmission in critical motor control areas including the frontal lobe, basal ganglia, locus coeruleus and spinal cord. In general, freezing is resistant to pharmacological therapy although in some patients reduction or increase in levodopa dose may improve this symptom. Three medicated PD patients exhibiting disabling episodes of freezing of gait are presented in whom brief, extracerebral applications of pulsed electromagnetic fields (EMFs) in the picotesla range improved freezing. Two patients had freezing both during “on” and “off” periods while the third patient experienced random episodes of freezing throughout the course of the day. The effect of each EMFs treatment lasted several days after which time freezing gradually reappeared, initially in association with “off” periods. These findings suggest that the neurochemical mechanisms underlying the development of freezing are sensitive to the effects of EMFs, which are believed to improve freezing primarily through the facilitation of serotonin (5-HT) neurotransmission at both junctional (synaptic) and nonjunctional neuronal target sites.

Int J Neurosci. 1998 Apr;93(3-4):239-50.

Treatment with AC pulsed electromagnetic fields normalizes the latency of the visual evoked response in a multiple sclerosis patient with optic atrophy.

Sandyk R.

Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY 11746, USA.

Visual evoked response (VER) studies have been utilized as supportive information for the diagnosis of multiple sclerosis (MS) and may be useful in objectively monitoring the effects of various therapeutic modalities. Delayed latency of the VER, which reflects slowed impulse transmission in the optic pathways, is the most characteristic abnormality associated with the disease. Brief transcranial applications of AC pulsed electromagnetic fields (EMFs) in the picotesla flux density are efficacious in the symptomatic treatment of MS and may also reestablish impulse transmission in the optic pathways. A 36 year old man developed an attack of right sided optic neuritis at the age of 30. On presentation he had blurring of vision with reduced acuity on the right and fundoscopic examination revealed pallor of the optic disc. A checkerboard pattern reversal VER showed a delayed latency to right eye stimulation (P100 = 132 ms; normal range: 95-115 ms). After he received two successive applications of AC pulsed EMFs of 7.5 picotesla flux density each of 20 minutes duration administered transcranially, there was a dramatic improvement in vision and the VER latency reverted to normal (P100= 107 ms). The rapid improvement in vision coupled with the normalization of the VER latency despite the presence of optic atrophy, which reflects chronic demyelination of the optic nerve, cannot be explained on the basis of partial or full reformation of myelin. It is proposed that in MS synaptic neurotransmitter deficiency is associated with the visual impairment and delayed VER latency following optic neuritis and that the recovery of the VER latency by treatment with pulsed EMFs is related to enhancement of synaptic neurotransmitter functions in the retina and central optic pathways. Recovery of the VER latency in MS patients may have important implications with respect to the treatment of visual impairment and prevention of visual loss. Specifically, repeated pulsed applications of EMFs may maintain impulse transmission in the optic nerve and thus potentially sustain its viability.

Int J Neurosci, 66(3-4):209-35 1992 Oct

Magnetic fields in the therapy of parkinsonism.

Sandyk R NeuroCommunication Research Laboratories, Danbury, CT 06811.

In a recent Editorial published in this Journal, I presented a new and revolutionary method for the treatment of Parkinson’s disease (PD). I reported that extracranial treatment with picoTesla magnetic fields (MF) is a highly effective, safe, and revolutionary modality in the symptomatic management of PD. My conclusion was based on experience gained following the successful treatment of over 20 Parkinsonian patients, two of whom had levodopa-induced dyskinesias. None of the patients developed side effects during a several month period of follow-up. In the present communication, I present two reports. The first concerns four Parkinsonian patients in whom picoTesla MF produced a remarkable and sustained improvement in disability. Three of the patients had idiopathic PD and the fourth patient developed a Parkinsonian syndrome following an anoxic episode. In all patients, treatment with MF was applied as an adjunct to antiParkinsonian medication. The improvement noted in these patients attests to the efficacy of picoTesla MF as an additional, noninvasive modality in the therapy of the disease. The second report concerns two demented Parkinsonian patients in whom treatment with picoTesla MF rapidly reversed visuospatial impairment as demonstrated by the Clock Drawing Test. These findings demonstrate, for the first time, the efficacy of these MF in the amelioration of cognitive deficits in Parkinson’s disease. Since Alzheimer’s pathology frequently coexists with the dementia of Parkinsonism, these observations underscore the potential efficacy of picoTesla MF in the treatment of dementias of various etiologies.