Spinal Cord Injury

Spinal Cord. 2009 Jul;47(7):508-18. Epub 2009 Jan 27.

Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review.

Biering-Sørensen F, Hansen B, Lee BS.

Clinic for Spinal Cord Injuries, Rigshospitalet, Hornbaek, Denmark. finbs@rh.regionh.dk

Abstract

OBJECTIVE: Review the literature on non-pharmacological prevention and treatment of osteoporosis after spinal cord injury (SCI).

METHODS: PubMed, EMBASE and the Cochrane Controlled Trials Register were searched. All identified papers were read by title, abstract and full-length article when relevant. Hand search of the articles’ sources identified additional papers. For included studies, the level of evidence was determined.

RESULTS: No studies conclusively showed an effective intervention. However, there are few randomized controlled trials (RCTs), and those that exist assess interventions and outcome measures that could be improved. Five studies on weight-bearing early post-injury are conflicting, but standing or walking may help retain bone mineral. In the chronic phase, there was no effect of weight bearing (12 studies). One study found that an early commencement of sports after SCI improved bone mineral, and the longer the period of athletic career, the higher the (leg) bone mineral. Early after SCI, there may be some effects of electrical stimulation (ES) (five studies). Chronic-phase ES studies vary (14 studies, including mixed periods after injury), but improvement is seen with longer period of training, or higher frequency or stimulus intensity. Improvements correspond to trabecular bone in the distal femur or proximal tibia. Impact vibration and pulsed electromagnetic fields may have some positive effects, whereas pulsed ultrasound does not. Six studies on the influence of spasticity show inconsistent results.

CONCLUSIONS: Bone mineral should be measured around the knee; the length and intensity of the treatment should be sufficiently long and high, respectively, and should commence early after SCI. If bone mineral is to remain, the stimulation has to be possibly continued for long term. In addition, RCTs are necessary.

Spine. 2003 Dec 15;28(24):2660-6.

Exposure to pulsed magnetic fields enhances motor recovery in cats after spinal cord injury.

Crowe MJ, Sun ZP, Battocletti JH, Macias MY, Pintar FA, Maiman DJ.

Neuroscience Research Laboratories, The Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA. mcrowe@mcw.edu

STUDY DESIGN: Animal model study of eight healthy commercial cats was conducted.

OBJECTIVE: To determine whether pulsed electromagnetic field (PMF) stimulation results in improvement of function after contusive spinal cord injury in cats. SUMMARY OF

BACKGROUND DATA: PMF stimulation has been shown to enhance nerve growth, regeneration, and functional recovery of peripheral nerves. Little research has been performed examining the effects of PMF stimulation on the central nervous system and no studies of PMF effects on in vivo spinal cord injury (SCI) models have been reported.

MATERIALS AND METHODS: PMF stimulation was noninvasively applied for up to 12 weeks to the midthoracic spine of cats with acute contusive spinal cord injury. The injury was produced using a weight-drop apparatus. Motor functions were evaluated with the modified Tarlov assessment scale. Morphologic analyses of the injury sites and somatosensory-evoked potential measurements were conducted to compare results between PMF-stimulated and control groups.

RESULTS: There was a significant difference in locomotor recovery between the PMF-stimulated and control groups. Although not statistically significant, PMF-stimulated spinal cords demonstrated greater sparing of peripheral white matter and smaller lesion volumes compared to controls. Somatosensory-evoked potential measurements indicated that the PMF-stimulated group had better recovery of preinjury waveforms than the control group; however, this observation also was not statistically significant because of the small sample size.

CONCLUSIONS: This preliminary study indicates that pulsed magnetic fields may have beneficial effects on motor function recovery and lesion volume size after acute spinal cord injury.

J Spinal Cord Med. 1999 Winter;22(4):239-45.

The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury.

Garland DE, Adkins RH, Matsuno NN, Stewart CA.

Rancho Los Amigos Medical Center, Downey, California 90242, USA.

Abstract

The purpose of this study was to determine the effects of pulsed electromagnetic fields on osteoporotic bone at the knee in individuals with chronic spinal injury. The study consisted of 6 males with complete spinal cord injury at a minimum of 2 years duration. Bone mineral density (BMD) was obtained at both knees at initiation, 3 months, 6 months, and 12 months using dual energy X-ray absorptiometry. In each case, 1 knee was stimulated using The Bone Growth Stimulator Model 3005 from American Medical Electronics, Incorporated and the opposite knee served as the control. Stimulation ceased at 6 months. At 3 months BMD increased in the stimulated knees 5.1% and declined in the control knees 6.6% (p < .05 and p < .02, respectively). By 6 months the BMD returned to near baseline values and at 12 months both knees had lost bone at a similar rate to 2.4% below baseline for the stimulated knee and 3.6% below baseline for the control. There were larger effects closer to the site of stimulation. While the stimulation appeared useful in retarding osteoporosis, the unexpected exaggerated decline in the control knees and reversal at 6 months suggests underlying mechanisms are more complex than originally anticipated. The authors believe a local as well as a systemic response was created.

Zh Nevropatol Psikhiatr Im S S Korsakova. 1990;90(7):108-12.

Regional cerebral angiodystonia in the practice of a neurologist and therapist.

[Article in Russian]

Pokalev GM, Raspopina LA.

Altogether 108 patients with regional cerebral angiodystonia were examined using rheoencephalography, measurements of temporal and venous pressure and functional tests (nitroglycerin and bicycle ergometry). Three variants of abnormalities connected with regional cerebral angiodystonia were distinguished: dysfunction of the inflow, derangement of the venous outflow, and initial functional venous hypertonia. The patients were treated with nonmedicamentous therapy (electroanalgesia, magnetotherapy, iontotherapy).

Bioelectromagnetics. 1987;8(2):159-64.

Pulsed subcutaneous electrical stimulation in spinal cord injury: preliminary results.

Ellis W.

The treatment of long-term, stable para- and quadriplegics with pulsed electrical stimulation for pain control resulted in, anecdotally, a significant number of these individuals showing increased motor function as well as sensory awareness. This small pilot study was conducted in order to assess the hypothesis that pulsed electrical fields can effect diseased neurological function. Thirteen para- and quadriplegic subjects with 18 months of stable neurological signs and symptoms were exposed daily to pulsed electrical stimulation for a 6-month period and assessed for any improvement in motor function or sensory perception. The hypothesis is that pulsed electromagnetic fields can normalize viable but dysfunctional neuronal structures. Results were encouraging.

Surg Neurol. 1987 Oct;28(4):269-76.

Effect of alternating current stimulation of the spinal cord on recovery from acute spinal cord injury in rats.

Wallace MC, Tator CH, Gentles WM.

The therapeutic value of electrical stimulation of the spinal cord was studied in rats injured by acute compression of the spinal cord. Twenty adult Wistar rats underwent cord compression at T6-7 by the extradural clip compression technique at a force of 125 g for 1 minute. After injury and group randomization, stimulating electrodes were placed extradurally, proximal and distal to the injury site, and attached to a small, implantable receiver-stimulator. The receiver was secured to the paraspinal muscles and implanted subcutaneously, overlying the thoracic spine. The animals were maintained in specially designed cages with encircling antennae attached to radio frequency transmitters. The 10 treatment animals were subjected to a 460-kHz electromagnetic field, pulsed at a frequency of 10 Hz. The receivers converted the pulsed radio frequency into square-wave pulses at the cord electrodes (width 1 ms, frequency 10 Hz). The 10 control animals were exposed to a similar field but with a frequency below the range of the tuned receiver, and therefore they did not receive the square-wave pulse. Clinical recovery was assessed by the inclined plane technique which measures the maximum angle of inclination attained without falling. After 15 weeks of continuous spinal cord stimulation, the inclined plane performance was not significantly different between the two groups (treatment group mean, 44.4 +/- 5.4; control group mean, 41.7 +/- 7.9). This is the first experimental study of the effect of long-term continuous electrical stimulation on spinal cord recovery in mammals. The methods required and the technical aspects involved in achieving continuous stimulation, and the guidelines for future study of this modality are discussed.

Paraplegia. 1976 May;14(1):12-20.

Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field.

Wilson DH, Jagadeesh P.

Peripheral nerve section and suture was performed in 132 rats. Postoperatively half the animals were exposed to a pulsed electromagnetic field each day and half were kept as controls. Nerve conduction studies, histology and nerve fibre counts all indicated an increased rate of regeneration in the treated animals. A similar controlled study of spinal cord regeneration following hemicordotomy in cats has been started, and preliminary results indicate that when the animals are sacrificed three months after the hemicordotomy, the pulsed electromagnetic therapy has induced nerve fibre regeneration across the region of the scar.

Neurosci Behav Physiol. 1998 Sep-Oct;28(5):594-7.

Magnetic and electrical stimulation in the rehabilitative treatment of patients with organic lesions of the nervous system.

Tyshkevich TG, Nikitina VV.

A. L. Polenov Russian Science Research Neurosurgical Institute, St. Petersburg.

Studies were performed on 89 patients with organic lesions of the nervous system in which the leading clinical symptoms consisted of paralysis and pareses. Patients received complex treatment, including pulsed magnetic fields and an electrical stimulation regime producing multilevel stimulation. A control group of 49 patients with similar conditions was included, and these patients received only sinusoidal currents. Combined treatment with magnetic and electrical stimulation was more effective, as indicated by radiographic and electromyographic investigations.