Hearing Loss – Hypoacusis – Hyperacusis

Photomed Laser Surg. 2010 Jun;28(3):371-7.

Pain threshold improvement for chronic hyperacusis patients in a prospective clinical study.

Zazzio M.

Audio Laser-Kliniken, Flygeln, Hovmantorp, Sweden. audiolaser@mail.nu


OBJECTIVE: The aim of this study was to investigate if laser therapy in combination with pulsed electromagnetic field therapy/repetitive transcranial magnetic stimulation (rTMS) and the control of reactive oxygen species (ROS) would lead to positive treatment results for hyperacusis patients.

BACKGROUND DATA: Eight of the first ten patients treated for tinnitus, who were also suffering from chronic hyperacusis, claimed their hyperacusis improved. Based upon that, a prospective, unblinded, uncontrolled clinical trial was planned and conducted. ROS and hyperacusis pain thresholds were measured.

MATERIALS AND METHODS: Forty-eight patients were treated twice a week with a combination of therapeutic laser, rTMS, and the control and adjustment of ROS. A magnetic field of no more than 100 microT was oriented behind the outer ear, in the area of the mastoid bone. ROS were measured and controlled by administering different antioxidants. At every treatment session, 177-504 J of laser light of two different wavelengths was administered toward the inner ear via meatus acusticus.

RESULTS: The improvements were significantly better in the verum group than in a placebo group, where 40% of the patients were expected to have a positive treatment effect. The patients in the long-term follow-up group received significantly greater improvements than the patients in the short-term follow-up group.

CONCLUSION: The treatment is effective in treating chronic hyperacusis.

Vestn Otorinolaringol. 2002;(1):11-4.

Electrophysical effects in combined treatment of neurosensory hypoacusis.

Article in Russian]

Morenko VM, Enin IP.

The authors consider different methods of electrobiophysical impacts on the body in the treatment of neurosensory hypoacusis: laser beam, laser puncture, electrostimulation, magnetotherapy, magnetolasertherapy, electrophoresis, etc. These methods find more and more intensive application in modern medicine. Further success of physiotherapy for neurosensory hypoacusis depends on adequate knowledge about mechanisms of action of each physical method used and introduction of novel techniques.

Vestn Otorinolaringol. 2001;(4):10-2.

Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy.  a prospective clinical study.

Article in Russian]

Morenko VM, Enin IP.

Magnetotherapy effects on cerebral hemodynamics were studied using rheoencephalography (REG). When the treatment results and changes in cerebral hemodynamics were compared it was evident that normalization or improvement of vascular status in vertebrobasilar and carotid territories registered at REG results in better hearing. This confirms the role of vascular factor in pathogenesis of neurosensory hypoacusis of different etiology and effectiveness of magnetotherapy in such patients.

Vestn Otorinolaringol. 1996 Nov-Dec;(6):23-6.

The treatment of hypoacusis in children by using a pulsed low-frequency electromagnetic field.

[Article in Russian]

Bogomil’skii MR, Sapozhnikov IaM, Zaslavskii AIu, Tarutin NP.

The authors provide specifications of the unit INFITA supplied with ELEMAGS attachment of their own design; the technique of treating hypoacusis in children with utilization of impulse low-frequency electromagnetic field; the results of this treatment in 105 hypoacusis children. The method was found highly effective and valuable for wide practice.

Med Tekh. 1995 Mar-Apr;(2):40-1.

ELEMAGS. apparatus and clinical experience in its use in the treatment of children with hypoacusis and otalgia.

[Article in Russian]

Zaslavskii AIu, Sapozhnikov IaM, Markarov GS, Gelis IuS.

To enhance effectiveness of magnetotherapy in the treatment of otic diseases the authors propose to use impulse low-frequency electromagnetic field in combination with constant magnetic field. ELEMAGS equipment based on the above principles is introduced to treat cochlear neuritis and neurosensory hypoacusis in children.

Vopr Kurortol Fizioter Lech Fiz Kult. 1994 Jan-Feb;(1):16-9.

The magnetic amplipulse therapy of vestibular dysfunctions of vascular origin by using the Sedaton apparatus (experimental research).

[Article in Russian]

Mal’tsev AE.

The paper describes the results of combined utilization of magnetic field (MF), sinusoidal modulated current (SMC) and galvanic current (GC) generated by a specially devised unit “Sedaton”. This multimodality physiotherapy was tested in chronic experiments on 25 cats with experimental vascular and vestibular dysfunction. MF in combination with SMC displayed greater efficacy than in monotherapy. Positive physiological reactions were more pronounced.

Leave a Reply